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Abstract

This thesis considers Hermitian random matrices that are non-invariant, meaning they have few

symmetries. First, we study the asymptotics of their determinants as the matrix size diverges, and

the effects of these on the geometry of high-dimensional random functions. Second, we study large

deviations of their extremal eigenvalues.

The classical Kac-Rice formula provides a bridge between random geometry and random ma-

trices. It relates the expected number of critical points of a real-valued random function on RN , on

the one hand, to the expected absolute value of the determinant of an N ×N random matrix, on

the other hand. In the large-N limit, it thus reduces counts of critical points to determinant asymp-

totics for large random matrices. We are especially interested in “non-invariant” random functions,

meaning functions with few (distributional) symmetries. For such functions, the corresponding

random matrices are also “non-invariant.” In particular, large-deviations principles, crucial in past

studies of highly symmetric random functions, are usually not available.

We start by identifying simple criteria that yield exponential asymptotics of these large deter-

minants. These criteria are satisfied by a wide variety of matrix models, including Wigner matrices

and sample covariance matrices with near-optimal 2+ε finite moments; Erdős-Rényi matrices with

near-optimal sparsity p > N ε/N ; band matrices with any polynomial bandwidth W > N ε; and

Gaussian matrices with a variance profile.

Then we use our determinant asymptotics and the Kac-Rice formula to study the exponential

count of critical points, called “landscape complexity,” for three models of random functions. First,

we consider the “elastic manifold,” a classic model in statistical physics of particle configurations
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with self-interactions in a disordered environment, where we confirm formulas of Fyodorov and

Le Doussal on a phase transition between the simple and glassy regimes. Second, we introduce a

new, general signal-plus-noise model, where we find a surprising threshold distinguishing positive vs.

zero complexity, with universal near-critical behavior close to this threshold. Third, we characterize

complexity of bipartite spherical spin glasses, a sandbox model of spin glasses beyond the classical

mean-field setup.

Finally, we study additively deformed Wigner matrices with certain sub-Gaussian entries. We

establish a large-deviations principle for their extremal eigenvalues, building on recent techniques

of Guionnet-Husson and Guionnet-Maïda.
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Chapter 1

Introduction

1.1 Random determinants: Our results

In the first part of this thesis, we study the quantity E[|det(HN )|], where HN is an N × N real-

symmetric random matrix, and identify its leading-order exponential asymptotics for a wide variety

of matrices HN . These asymptotics can be guessed as follows: Writing µ̂HN = 1
N

∑N
i=1 δλi(HN ) for

the empirical spectral measure of HN , one observes

E[|det(HN )|] = E[eN
∫

log|λ|µ̂HN (dλ)]

(interpreted appropriately if an eigenvalue vanishes). If µ̂HN concentrates about some deterministic

limiting measure µ∞, this suggests asymptotics of the form

lim
N→∞

1
N

logE[|det(HN )|] =
∫

log|λ|µ∞(dλ), (1.1.1)

although to prove this, one needs to understand the logarithmic singularity and how it interacts

with the concentration of the empirical spectral measure. We are able to overcome these issues,

and obtain the following result.
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Theorem 1.1.1. (Chapter 2 in this thesis, from Ben Arous-Bourgade-M. [35]) We find

lim
N→∞

1
N

logE[|det(HN )|] =
∫

log|λ|µ∞(λ) dλ

when HN is one of the following:

• a Wigner matrix with (near-optimal) 2 + ε finite moments (and µ∞ is the semicircle law ρsc

with density

ρsc(dx) =
√

(4− x2)+
2π dx

with respect to Lebesgue measure),

• a sample covariance matrix with (near-optimal) 2 + ε finite moments and some regularity

assumptions on the entries (and µ∞ is the Marčenko-Pastur law),

• the adjacency matrix of an Erdős-Rényi random graph with parameter p > N ε/N (and µ∞ is

the semicircle law),

• a one-dimensional band matrix with any polynomial bandwidth W > N ε and some regularity

assumptions on the entries (and µ∞ is the semicircle law), or

• the free-addition model AN + ONBNO
T
N , where AN and BN are real, deterministic, and

diagonal, and ON is Haar orthogonal (and µ∞ is the free convolution of the limiting empirical

spectral measures of AN and BN ).

In the Gaussian case, we find

lim
N→∞

( 1
N

logE[|det(HN )|]−
∫

log|λ|µN (λ) dλ
)

= 0 (1.1.2)

when HN is one of the following:

• Gaussian with a mean-field (co)variance profile and/or a mean, or
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• Gaussian with zero blocks in special places (for example, AN+
(
W1 0
0 W2

)
where AN is determin-

istic and the Wi’s are independent matrices from the Gaussian Orthogonal Ensemble (GOE),

meaning the entries (Wi)jk are independent up to symmetry with (Wi)jk ∼ N (0, 1+δjk
N )).

In these Gaussian cases, the measures µN arise from the theory of the so-called Matrix Dyson

Equation (MDE), developed by Erdős and collaborators in papers such as [5, 6]. In most natural

cases, they have a weak limit µ∞ for which (1.1.1) holds.

Versions of (1.1.1) have appeared in the literature, mostly in cases when HN enjoys properties

we could describe as “invariance” – a term more evocative than precise, but roughly meaning that

HN exhibits a high degree of symmetry, and therefore a high degree of integrability. For example,

when HN is a GOE matrix, one can give an exact expression at finite N for E[|det(HN )|] in terms

of Hermite polynomials [84]. Other highly symmetric models include the classical compact groups,

and in fact the whole family of invariant ensembles, or matrices whose law admits a density with

respect to Lebesgue measure of the form 1
ZN,β,V

exp(−β
2N TrV (H)) for some “potential” function

V : R→ R. (In my usage, “invariant ensembles” are a strict subset of “models enjoying properties

we could describe as invariance.”)

The novelty in our result is that the matrices are “non-invariant,” meaning they exhibit few

symmetries. One archetypal example is a full-rank additive deformation of GOE. Often, observables

of non-invariant random matrices do not admit tractable finite-N formulas, but one can still hope

for large-N asymptotics such as (1.1.1).

The goal of this thesis is to contribute to the general theory of non-invariant random matrices,

finding both old and new phenomena, and to apply them to the study the geometry of high-

dimensional random functions – a research program known as “landscape complexity,” which we

describe in Section 1.2. In Section 1.3 we give some classic results in this program, which motivate

our new complexity results in Section 1.4. After circling back to a history of random determinants

and a discussion of our new methods in Section 1.5, in Section 1.6 we give our results on large

deviations for non-invariant random matrices, and remark on their possible future interplay with

landscape complexity. Finally, in Section 1.7 we discuss open questions.
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1.2 Landscape complexity: Overview

Consider a smooth, Gaussian random function HN : RN → R, perhaps a Hamiltonian from sta-

tistical physics or a loss function from data science, which we think of as a “landscape.” We wish

to understand the geometry of this function for large N , specifically through the random variable

Crt(HN ), which stores the (random) number of critical points of HN . This random variable is often

exponential in N , so we consider the real number

Σ = lim
N→∞

1
N

logE[Crt(HN )],

which is known as the (annealed) complexity of the family (HN )∞N=1. Much of this thesis is devoted

to techniques to compute Σ and related quantities when the landscapeHN is non-invariant, meaning

it exhibits few symmetries. One important variant is Σmin, which is the complexity specifically of

local minima among all critical points.

Even though we lose information passing from HN to Crt(HN ), the complexity is still conjec-

tured to be a good predictor of interesting phenomena about HN . For example:

• The sign of Σ is useful for predicting the dynamics of optimization on HN . For example,

perhaps HN is a likelihood function in some statistical problem, which is random because it

depends on random samples. It might be the case that the maximum likelihood estimator

(the MLE, which is the argmax of HN ) is known to be a good, consistent estimator – but

that we do not know a good algorithm with which to quickly compute it. This is known as a

computational-to-statistical gap, and a variety of research in data science is concerned with

studying such gaps. One reason local algorithms like Langevin dynamics might fail is if they

get trapped in a large number of critical points of HN , and this suggests the following rule

of thumb:

– If Σ 6 0, then optimizing HN should be easier.

– If Σ > 0, then optimizing HN should be harder.
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• Variants of Σ can be useful for locating ground states. Write Σ(t) for the exponential asymp-

totics of the number of critical points of HN at which HN takes values below t (or Nt,

depending on the scaling). Then Σ(·) : R → R is a non-decreasing function, tending as

t → +∞ to the complexity Σ of all critical points. By Markov’s inequality, the quantity

inf{t : Σ(t) = 0} is a lower bound for the ground state. (To find a matching upper bound,

one has to show concentration of Crt(HN ) about its mean.)

• Finally, if HN is the Hamiltonian of some model in statistical physics, there should be some

relationship between variants of Σ and replica symmetry/replica symmetry breaking. To the

best of our knowledge, the precise relationship is still being worked out even in the physics

literature, but here is a heuristic example: At very low temperature, the Gibbs measure should

be dominated by (neighborhoods of) local minima with very low energy levels. If there are

many of these arranged in some hierarchy (which could be studied via the quenched analogue

of Σ(t) above when t is close to the ground state), then the model might have broken replica

symmetry; but if there are few of these, then the model might be replica symmetric. See

Fyodorov and Williams [94] for one model where this connection can be proven.

We emphasize that these are not theorems, and indeed the extent to which they are true is still an

area of active research.

The best way to compute Σ is through a classical result known as the Kac-Rice formula, which

forms a bridge between random matrices and random geometry. In this case, the Kac-Rice formula

reads

E[Crt(HN )] =
∫
RN

E
[∣∣∣det(∇2HN (x))

∣∣∣|∇HN (x) = 0
]
φx(0) dx, (1.2.1)

where φx(0) is the density of the (Gaussian) random vector ∇HN (x) evaluated at 0 ∈ RN . (Kac-

Rice is usually stated over a compact set, but for simplicity we assume the common situation where

one can pass to all of RN by monotone convergence.) The books [2, 17] give a thorough introduction

to the Kac-Rice formula. We remark that, between a variety of differential-geometric conditions

and the difficulty of conditioning beyond the Gaussian regime, Kac-Rice is effectively only available

5



when HN is Gaussian (or a function of a Gaussian).

In many models, the inner expectation in (1.2.1) does not depend on x ∈ RN , and
∫
RN φx(0) dx

is easy to understand, so all the difficulty in computing Σ lies in the asymptotics

lim
N→∞

1
N

logE[|det(HN )|], (1.2.2)

where HN is a random matrix distributed as the Hessian of HN (at, say, x = 0), conditioned on

criticality. An analogue of Kac-Rice for local minima inserts an indicator 1{∇2HN (x) > 0} inside

the conditioned expectation, restricting the conditioned Hessian to be positive semi-definite, and

this indicator persists in the analogue of (1.2.2).

In many of the landscape models studied to date, the random function HN is invariant, and

thus the random matrix HN is invariant. In particular, large deviations principles (LDPs) are often

available for its empirical spectral measure or extreme eigenvalues, and these LDPs have been an

important input for past results on invariant models. Some of these models are described in Section

1.3.

But when the random function HN is non-invariant, the random matrix HN is also non-

invariant. Theorem 1.1.1 therefore allows us to give new results in landscape complexity, which are

described in Section 1.4.

1.3 Landscape complexity: History

Our models of study are inspired by three important results in landscape complexity, which we

now present. A more extensive history is given in Chapter 3. In comparison with these models,

our models will have fewer symmetries: for example we give a signal-plus-noise model where the

signal is anisotropic rather than isotropic, and a spin-glass model where spins interact in multiple

different groups rather than all on equal footing.
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Soft spins in an isotropic well. The first model does not have a consistent name in the literature:

Sometimes it is thought of as a “zero-dimensional elastic manifold,” but we will refer to it as “soft

spins in an isotropic well.” It is the subject of Fyodorov’s breakthrough 2004 paper [84], which is

also the first paper in modern landscape complexity, and it is given as

HN (x) = µ

2 ‖x‖
2 + VN (x), (1.3.1)

where µ > 0 is a parameter and VN (x) is a centered, isotropic Gaussian field with covariance

structure given by

E[VN (x)VN (y)] = NB

(
‖x− y‖2

2N

)

for some function B : R+ → R (think B(r) = e−r, for example). Schoenberg classified all possible

such functions B (see (3.2.1)), and we add a very mild regularity assumption. Typically VN has

many critical points, whereas the quadratic term only has one, and one should thus expect a phase

transition in µ: When µ is quite small, the noise term should dominate, the model should be

“disordered,” and HN should have many critical points. But when µ is quite large, the quadratic

“signal” should dominate, the model should be “ordered,” and HN should have few critical points.

This phenomenon is sometimes called “topology trivialization,” and it is the intuition for the

following theorem, which combines results of Fyodorov and Fyodorov-Williams.

Theorem 1.3.1. [84, 94] Write Σtot(µ,B) (respectively, Σmin(µ,B)) for the complexity of total

critical points (respectively, just local minima) of this model. These depend on B only through the

scalar B′′(0), and

Σtot(µ,B′′(0)) =


1
2

(
µ2

B′′(0) − 1
)
− log

(
µ√
B′′(0)

)
if µ 6 µc :=

√
B′′(0),

0 if µ > µc,

Σmin(µ,B′′(0)) =


1
2

[
−3− log

(
µ2

B′′(0)

)
+ 4µ√

B′′(0)
− µ2

B′′(0)

]
if µ 6 µc,

0 if µ > µc.
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(Actually, Fyodorov and Williams studied a more general model, replacing the radial quadratic

term µ
2‖x‖

2 with a radial term NU(‖x‖
2

2N ) for some fixed, convex U .)

We make several observations about these functions that will reappear in the sequel. First, the

phase transition is continuous, and the near-critical behavior is quadratic for total critical points

but cubic for local minima. Second, it is not obvious that the same critical value µc should appear

both for total critical points and for local minima; one might have guessed that, for fixed B′′(0),

there was a range of µ values with zero complexity for local minima but positive complexity for

total critical points (say from many saddle points), and this turns out to be wrong. Although the

theorem is for the large-N limit, Figure 1.1 displays a visible phase transition when N = 2 and µ

varies.

Spherical spin glasses. The second important result is the work of Auffinger-Ben Arous-Černý

and Auffinger-Ben Arous on spherical spin glasses [10, 9]. For integer p > 2, the pure p-spin

Hamiltonian HN,p : SN−1 → R is given by

HN,p(σ) = 1
N (p−1)/2

N∑
i1,...,ip=1

Ji1,...,ipσi1 . . . σip

where σ = (σ1, . . . , σN ), the sum is over all p-tuples, and the Ji1,...,ip are i.i.d. standard Gaussians.

Spin-glass mixtures are prescribed by a sequence β = (βp)∞p=2 of positive numbers satisfying the

decay condition
∑∞
p=2 2pβp <∞, and are given by the Hamiltonian

HN (σ) =
∞∑
p=2

βpHN,p(σ),

where the different pure-p spin Hamiltonians are independent. These exhibit markedly different

phenomena from the soft-spins model: For any model that is not a pure 2-spin, the total complexity

of local minima (and thus of critical points) is positive, so there is no order-disorder phase transition.

Instead, the interesting question is about the location of critical points in energy space. That

is, restricting ourselves to pure p-spin models for exposition, one studies the complexity Σp(t)
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(respectively, Σp,k(t)) of critical points (respectively, critical points of fixed index k) at which the

Hamiltonian takes values at most Nt. For pure p-spin models, among the many results of [10] are

the following.

(a) The landscape appears rugged when µ = 0. (b) Fewer crit. points when µ = 10.

(c) Many fewer crit. points when µ = 20. (d) Almost no crit. points when µ = 30.

Figure 1.1: Numerical (discretized) samples of H2 on [−1, 1]2 with the same noise and four dif-
ferent choices of µ. Precisely, these are scatterplots of H2(x) values for x on a 41 × 41 lattice,
with an overlaid mesh fit, made with Matlab. Here B(r) = exp(−80r), meaning E[V2(x)V2(y)] =
2 exp(−20‖x− y‖2).
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Theorem 1.3.2. [10] Fix p > 3 and consider the threshold

E∞ = E∞(p) = 2
√
p− 1
p

and the function I1 : (−∞,−E∞]→ R given by

I1(u) = 2
E2
∞

∫ −E∞
u

√
y2 − E2

∞ dy.

The functions Σp and Σp,k defined above are given explicitly as

Σp(t) =



1
2 log(p− 1)− p−2

4(p−1)u
2 − I1(u) if u 6 −E∞,

1
2 log(p− 1)− p−2

4(p−1)u
2, if − E∞ 6 u 6 0,

1
2 log(p− 1) if 0 6 u,

Σp,k(t) =


1
2 log(p− 1)− p−2

4(p−1)u
2 − (k + 1)I1(u) if u 6 −E∞,

1
2 log(p− 1)− p−2

p if u > −E∞.

Furthermore, for any k > 0 write Ek = Ek(p) for the unique solution to Σp,k(−Ek(p)) = 0; then

E0 > E1 > E2 > · · · with limk→∞Ek(p) = E∞(p), and for any ε > 0 we have

lim sup
N→∞

1
N2 logP(exists crit. point of index k above level −N(E∞(p)− ε)) < 0, (1.3.2)

lim sup
N→∞

1
N

logP(exists crit. point of index > k below level −N(Ek(p) + ε)) < 0.

This result establishes a layered structure, where most critical points of index k are found in

the band [−NEk,−NE∞]. So the critical points with lowest energy are primarily local minima;

then in a higher-energy band one starts to see index-one saddle points; the index-two saddle points

in the next higher band, and so on.
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Spiked-tensor model. Finally, the third important result is the work of Ben Arous, Mei, Mon-

tanari, and Nica on the spiked-tensor model [43]. In this model, which depends on integer k > 3,

one is given a sample of the random function f : SN−1 → R defined by

f(σ) = λ〈u, σ〉k + 1√
2N

N∑
i1,...,ik=1

Gi1,...,ikσi1 · · ·σik .

Here λ > 0 is a signal-to-noise ratio; u ∈ SN−1 is an unknown signal we are trying to recover

by maximizing our sample(s) of f ; and (Gi1,...,ik)16i1,...,ik6N are i.i.d. standard Gaussians. When

λ = 0, we recover the pure spherical k-spin glass, which has positive complexity. But for large

λ, one expects the landscape to trivialize close to u. The argmax of f is the maximum-likelihood

estimator for u.

Given Borel M ⊂ [−1, 1] and E ⊂ R, write CrtN,∗(M,E) for the number of critical points σ of

f at which 〈σ, u〉 ∈ M and f(σ) ∈ E. By rotational invariance, E[CrtN,∗(M,E)] does not depend

on the choice of u.

Theorem 1.3.3. [43] For each fixed λ, there is an explicit, relatively simple function S∗ : [−1, 1]×

R→ (R ∪ {−∞,+∞}) such that, for any Borel M and E, we have

lim sup
N→∞

{
1
N

logE[CrtN,∗(M,E)]− sup
m∈M,e∈E

S∗(m, e)
}
6 0,

lim inf
N→∞

{
1
N

logE[CrtN,∗(M,E)]− sup
m∈M◦,e∈E◦

S∗(m, e)
}
> 0.

There is another λ-dependent function S0 satsfying an analogue for local maxima.

By analyzing S∗ and S0 as λ varies, Ben Arous et al. suggest the following qualitative picture

for some values λg > λc > 0:

• For 0 6 λ < λc, most local maxima σ have small correlations 〈σ, u〉 with the planted signal

and small function values f(σ).

• For λ ∈ (λc, λg), there are local maxima σ with large correlations 〈σ, u〉, but they have
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smaller function value f(σ) than other local maxima with small correlations, so the maximum-

likelihood estimator is still bad.

• For λ > λg, there are local maxima σ with large correlations 〈σ, u〉 and large function value

f(σ).

They also note the following: On the one hand, the best known algorithm requires λ & N (k−2)/2 to

succeed (meaning to achieve positive correlation with u). On the other hand, the complexity results

suggest that there are an exponential number of local maxima in the annulus {|〈σ, u〉| . λ−1/(k−2)},

and a uniformly random initialization on the sphere lies outside of this annulus with positive

probability in the same regime λ & N (k−2)/2. Although this is just an observation, it is consistent

with a claim like “local algorithms fail if they are initialized in regions of positive complexity.”

In general, the matrices that appear in these models are covered by our result on determinant

concentration.

1.4 Landscape complexity: Our results

In this section we describe our results on landscape complexity for three models. The first two

generalize the soft-spins model of [84], and the third is related to the spherical spin glasses of [10].

Elastic manifold. The elastic manifold is a classical model in statistical physics that assigns a

random energy to deterministic configurations of Ld points lying in RN . There are two contributions

to the energy: Each point behaves as the isotropic soft-spins model (1.3.1), plus there are nearest-

neighbor interactions between points. More formally, given positive integers L (“length”) and

d (“internal dimension”), we write Ω for the lattice J1, LKd, understood periodically. A point

configuration will be written as a deterministic u : Ω→ RN , and given positive numbers µ (“mass”)
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and t (“interaction strength”), we assign such a point configuration the random energy

H[u] =
∑
x∈Ω

(
µ‖u(x)‖2 + VN (u(x), x)

)
+
∑
x,y∈Ω

−t∆xy〈u(x),u(y)〉,

where ∆xy is the (x, y) entry of the Ld ×Ld matrix ∆, which is the periodic lattice Laplacian, and

where the (VN (·, x))x∈Ω are centered isotropic Gaussian fields, independent for different x values,

each with covariance E[VN (y1, x)VN (y2, x)] = NB
(
‖y1−y2‖2

N

)
for some function B satisfying (3.2.1)

(scaled here, for exposition, so that certain factors in the following simplify).

Notice that H contains three competing influences: (i) a quadratic confining potential with

strength µ that keeps points close to the origin; (ii) the elastic (Laplacian) term with strength t

that prefers ordered point configurations; and (iii) random spatial impurities (the Gaussian fields

VN ) with strength stored in B that prefer disordered point configurations. Figure 1.2 shows these

three competing influences visually.

In this context a “critical point” is a configuration u that is critical for the Hamiltonian (meaning

such that ∂ui(x)H[u] = 0 for all i and all x), and a “local minimum” is a critical point that also

locally minimizes the Hamiltonian against small perturbations of the points. Equivalently, one

can think of H as a Gaussian random function defined on (RN )Ω ∼= RNLd , in which case “critical

point” has its usual meaning. We want to count critical points in the regime when L and d are

fixed but N → +∞. Notice that, if µ is very large, then point configurations get pushed towards

zero, and there should be few critical point configurations; whereas if µ is very small, then point

configurations have more freedom to roam about space, and there should be many critical point

configurations. This is the content of the following theorem.

Write Σ(µ) = Σ(µ,L, d, t, B) for the complexity of critical points, and Σst(µ) = Σst(µ,L, d, t, B)

for the complexity of local minima.

Theorem 1.4.1. (Ben Arous-Bourgade-M. [36]) Write µ̂−∆ for the empirical spectral measure of

the Laplacian −∆, and for each t, let the “Larkin mass” µc = µc(L, d, t) be the unique positive
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(a) u(1) contribution. (b) u(2) contribution. (c) u(3) contribution. (d) u(4) contribution.

u(1)
u(2)

u(3)

u(4)

(e) The elastic contribution to the configuration energy is small, because the sum
〈u(1),u(2)〉+〈u(2),u(3)〉+〈u(3),u(4)〉+〈u(4),u(1)〉 of inner products between points
whose indices are nearest neighbors in the underlying lattice is small.

Figure 1.2: Informal schematic of one low-energy elastic manifold configuration when d = 1, L = 4,
and N = 2. The four manifold points u(1), u(2), u(3), and u(4) are indicated by squares. In the
top four subfigures, which indicate the contributions to the total energy made by each manifold
point on its own, each manifold point sees its own (independent) Gaussian environment and tries
to avoid points of high energy cost (represented by circles of the same color) while staying close
to the origin. In the bottom subfigure, these environments are overlaid, showing that the points
have achieved their separate goals while also keeping their lattice-neighbor inner products small.
The inner products 〈u(1),u(3)〉 and 〈u(2),u(4)〉 do not contribute, because {1, 3} and {2, 4} are
not lattice neighbors. Perhaps this configuration is a local minimum, meaning the energy H[u]
increases if we slightly perturb any of the images u(i). We are trying to count such minima (and
total critical points) in the N → +∞ limit, when these four points are immersed not in the plane
but in a high-dimensional space. This figure is inspired by [95, Figure 2].
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solution to ∫
R

µ̂−∆
(µc + tλ)2 = 1.

If µ > µc, then Σ(µ) = Σst(µ) = 0. If µ < µc, then Σ(µ) > Σst(µ) > 0, and these quantities are

given by relatively explicit formulas involving the log-potential of a certain free-convolution measure.

Alternatively, for each fixed u and t one can rescale the noise B and find a similar phase

transition; we show that the complexity of total critical points vanishes quadratically near this

phase transition, while the complexity of local minima vanishes cubically.

This result solves a problem of Fyodorov and Le Doussal [88], who studied the complexity of

this model and came to the same conclusion, assuming determinant asymptotics of the type (1.1.1)

which we can now verify with Theorem 1.1.1.

The elastic manifold has long attracted interest in its own right, both for its roughness exponent

and a phenomenon it displays called (de)pinning. The roughness exponent captures, for example,

how rugged an elastic interface is at large spatial distance, and attempts to compute it inspired

early technical developments of Fisher in functional renormalization group methods [80] and of

Mézard and Parisi in replica symmetry breaking [122]. (De)pinning is a nonlinear response to

applied force. Precisely, the point configurations have a preferred position in space, and they only

move from this position if an applied force f is larger than the so-called depinning threshold fc.

Pinning is critical in applications: for example, we can effectively store information on a magnetic

hard drive precisely because the data is “pinned” against, e.g., small temperature fluctuations.

Soft spins in an anisotropic well. Next we consider the Hamiltonian

HN (u) = 1
2〈u,DNu〉+ VN (u),

where VN is a centered isotropic Gaussian field with E[VN (x)VN (y)] = NB(‖x−y‖
2

2N ) as in (1.3.1),

and where (DN )∞N=1 is a sequence of deterministic, diagonal matrices without outliers whose empir-

ical spectral measures µ̂DN tend weakly to some µD, a limiting probability measure which should be
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compactly supported in (0,∞). That is, the confining potential is no longer radial, but has mean-

ingfully different directions given by the entries of DN , and the potential is ultimately characterized

by a probability measure rather than by a scalar. For example, if DN = diag(1, . . . , 1, 2, . . . , 2), then

the confining potential has two directions, and µD = 1
2(δ1 + δ2); but one can take general “signal

measures” µD which are not combinations of delta masses. We call this model “soft spins in an

anisotropic well.” Of course, in the special case DN = µ Id, we recover the original model (1.3.1) for

soft spins in an isotropic well. Although our results are for the N → +∞ limit, Figure 1.3 displays

how changing DN can qualitatively change the number of critical points when N = 2.

It is natural to expect an order/disorder phase transition for this problem, depending on some

scalar observable of µD. For example, consider the case µD = 1
2(δ1 + δ2). One might guess that

the complexity phase transition behaves as if µD were δ1 (meaning worst-case complexity, or the

left endpoint of µD), since perhaps there are many critical points “in the flat (one) direction.” On

the other hand, one might guess that the complexity phase transition behaves as if µD were δ2

(meaning best-case complexity, or the right endpoints of µD), since perhaps there are few critical

points “in the steep (two) direction.” Finally, one might guess that the complexity phase transition

behaves as if µD were δ3/2 (meaning average-case complexity, or the mean of µD), since perhaps

these two directions just average out.

All of these guesses are wrong. In fact, the complexity phase transition behaves as if µD were

δ√8/5. More generally, the right observable of µD is, surprisingly, the negative second moment.

Theorem 1.4.2. (Ben Arous-Bourgade-M. [36]) There exist relatively explicit functions

Σtot(µD, t), Σmin(µD, t)

such that the complexity of total critical points of HN is described by Σtot(µD, B′′(0)) and the

complexity of local minima of HN is described by Σmin(µD, B′′(0)). Furthermore, these functions
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are either both zero or both positive; we have

Σtot(µD, t) = Σmin(µD, t) = 0 if and only if t 6 tc = tc(µD) =
(∫

R

µD(dλ)
λ2

)−1
;

(a) The landscape appears rugged when D2 = 0. (b) Fewer crit. points when D2 = 3 · ( 6 0
0 1 ).

(c) Many fewer crit. points when D2 = 6 · ( 6 0
0 1 ). (d) Almost no crit. points when D2 = 10 · ( 6 0

0 1 ).

Figure 1.3: Numerical (discretized) samples of H2 on [−1, 1]2 with the same noise and four different
choices of signal DN . Precisely, these are scatterplots of H2(x) values for x on a 41 × 41 lattice,
with an overlaid mesh fit, made with Matlab. Here B(r) = exp(−80r), meaning E[V2(x)V2(y)] =
2 exp(−20‖x− y‖2).
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and for slightly supercritical t we have

Σtot(µD, t) = ctot(µD) · (t− tc)2 +O((t− tc)3),

Σmin(µD, t) = cmin(µD) · (t− tc)3 +O((t− tc)4),

with explicit prefactors ctot(µD), cmin(µD).

While the negative-second moment criterion is new, one can think of this as a universality result

for the quadratic near-critical behavior of total complexity, and the cubic near-critical behavior of

complexity of local minima, as these powers already appeared in the isotropic case.

We mention briefly a technical result in free probability that we establish during the proof

of Theorem 1.4.2, possibly of independent interest. Biane [49] gave a comprehensive study of

measures of the form “free convolution with semicircle.” These measures always admit a density,

but in contrast to semicircle itself, they can have disconnected supports, whose components can

merge at interesting cusps, typically with cube-root decay. Biane showed that all edges and cusps

of such measures decay at least as quickly as a cube-root; we show in Appendix B that at the

extremal edges the decay must be at least a square-root.

Bipartite spherical spin glasses. Finally, we consider a two-species spin glass, called the

“bipartite spherical spin glass,” generalizing the classical spherical spin glasses. Given integers

p, q > 1 and γ ∈ (0, 1), one defines the pure (p, q, γ) bipartite spin glass as the random function

HN,p,q,γ : SγN × S(1−γ)N given by

HN,p,q,γ(u, v) =
∑

16i1,...,ip6γN

∑
16j1,...,jq6(1−γ)N

Ji1,...,ip,j1,...,jqui1 . . . uipvj1 . . . vjq ,

where the J variables are i.i.d. Gaussians with variance N/((γN)p((1−γ)N)q). One can also define

the “mixed” Hamiltonian

HN (u, v) =
∑
p,q>1

βp,qHN,p,q,γ(u, v),
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for some double sequence (βp,q)p,q>1 that decays fast enough.

Theorem 1.4.3. (M. [120]) We find exact variational formulas for the complexity, both of total

critical points and of local minima, for pure models as well as mixtures. We also find two interesting

phenomena in the special case of pure models:

• There exists a constant E∞(p, q, γ) > 0 such that, for every ε > 0, all local minima have

energy values at most −N(E∞(p, q, γ)− ε) with all but exponentially small probability.

• If γ = p
p+q , then the complexity functions of a pure (p, q, γ) model are exactly those of a pure

p+ q (single-species) spin glass as studied in [10].

Notice that the first phenomenon – of local minima lying in a low-energy band – already

appeared in pure p-spin models (see (1.3.2)). We also note that upper and lower bounds for the

complexity of this model were previously given by Auffinger and Chen [11].

1.5 Random determinants: History

To the best of our knowledge, there is no previous systematic study of determinant asymptotics of

the form (1.2.2). But there are previous works on the size of different random determinants, in two

strands. A fuller history of the study of random determinants is given in Chapter 2.

First, starting in the 1950s, a variety of authors used combinatorics to find formulas for moments

E[det(HN )k], exact at finiteN , for small k, whenHN is actually non-Hermitian. These are combined

in the following theorem.

Theorem 1.5.1. Let µ be a probability measure, symmetric about zero, with unit variance and

fourth moment m4. Let HN be a non-Hermitian N×N random matrix with i.i.d. entries distributed

according to µ, and let Up,N be a non-Hermitian p×N random matrix with i.i.d. entries distributed

according to µ, with p 6 N .
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• (Fortet [82])

E[det(HN )2] = N !.

• (Nyquist, Rice, Riordan [128])

E[det(HN )4] = (N !)2

2

N∑
k=0

(N − k + 1)(N − k + 2)
k! (m4 − 3)k,

and exact formulas for any higher moment when µ is Gaussian. (Another proof for the

Gaussian case was later given in Prékopa [132].)

• (Dembo [68])

E[det(Up,N (Up,N )T )] = N !
(N − p)! ,

E[det(Up,N (Up,N )T )2] = N !
(N − p)!

p∑
k=0

(
p

j

)
(N + 2− k)!
(N + 2− p)! (m4 − 3)k,

and exact formulas for any higher moment when µ is Gaussian.

These explicit formulas do not admit extensions at other energy values (i.e., for the determinant

of HN −E, when E ∈ R), or with absolute values, which are what appears in the Kac-Rice formula.

Second, in the last 20 years, different papers in landscape complexity have studied versions

of (1.2.2) when HN is the relevant random matrix for their particular landscapes, which is often

invariant.

The earlier of these proofs often use the following clever trick, which allows for exact formulas

at finite N : The joint density of eigenvalues of the GOE is proportional to

∏
16i<j6N

|λi − λj |
N∏
i=1

e−
N
4 λ

2
i dλi,
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so we can write

E[|det(HN − x Id)|] ∝
∫ ( N∏

i=1
|λi − x|

) ∏
16i<j6N

|λi − λj |

 N∏
i=1

e−
N
4 λ

2
i dλi. (1.5.1)

The idea is to recognize x as an eigenvalue of an (N + 1) × (N + 1) GOE matrix, i.e., to

smuggle
∏N
i=1|λi − x| into the Vandermonde determinant. This allows one to relate the deter-

minant to the density of states of GOE (i.e., E[µ̂HN ](x) dx), which is explicit in terms of Her-

mite polynomials, allowing for asymptotic analysis. (In a variant that restricts the index as

E[|det(HN − x Id)|1{i(HN − x Id) = k}], one recognizes x as the kth smallest eigenvalue of an

(N + 1) × (N + 1) GOE matrix.) Notice that this argument is specific both (i) to the GOE and

its explicit joint density and (ii) to the perturbation −x Id (it would not work, for example, for the

perturbation −diag(1, . . . , 1, 2, . . . , 2)). That is, the trick (1.5.1) is an invariant argument.

Various results of this type are contained in the following theorem, which combines results of

several authors (sometimes in less generality than given there, for conciseness). These were mostly

originally stated as results about landscape complexity (and we discuss them as such in Section

1.3), but here we have rephrased them as results about determinants.

Theorem 1.5.2. Let HN be an N ×N GOE matrix.

• (Fyodorov [84]) Let ξ ∼ N (0, 1/N) be independent of HN , and let µ > 0 be deterministic.

Writing x = x(N,µ, t) =
√

N
2 (µ+ t), we have the finite-N formula

E[|det(HN + (ξ + µ) Id)|] = 1
2π

[(
N − 1

2

)
!
] ∫ ∞
−∞

dt e−N
t2
2

(
e−

x2
2

N∑
k=0

1
2kk!H

2
k(x)

+ 1
2N+1N !HN (x)

∫ ∞
−∞

e−
u2
2 HN+1(u) sign(x− u) du

)
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where Hk is the kth Hermite polynomial, and the asymptotics

lim
N→∞

1
N

logE[|det(HN + (ξ + µ) Id)|] =


µ2−1

2 if µ 6 1,

log(µ) if µ > 1
.

• (Auffinger-Ben Arous-Černý [10]) Fix c > 0, and let ξc ∼ N (0, c/N) be independent of HN .

Fix k ∈ N, and write EN+1
GOE for the expectation when λk is the kth smallest eigenvalue of a

GOE matrix of size (N + 1)× (N + 1). Then

E[|det(HN + ξc Id)|1{i(HN + ξc Id) = k}] =
Γ(N+1

2 )N−
N
2

√
cπ

EN+1
GOE

[
exp

{
(N + 1)

(1
2 −

1
2c

)
λ2
k

}]
.

Furthermore, there is an explicit function I(·) such that the kth smallest eigenvalue of a

GOE matrix satisfies an LDP at speed N with the good rate function kI(·) (for the smallest

eigenvalue, this dates back to Ben Arous-Dembo-Guionnet [37]; for k > 1 it was new in [10]).

Thus if c < 1 (equivalently 1
2−

1
2c < 0) the asymptotics can be found using Varadhan’s lemma.

Finally, in the last five or so years, papers in landscape complexity have started to consider

models beyond the regime of the trick (1.5.1) – that is, non-integrable models where one can only

give asymptotics rather than finite-N formulas.

For example, Ben Arous, Mei, Montanari, and Nica [43] consider a rank-one perturbation of

GOE, using an LDP for the largest eigenvalue of such a matrix established by Maïda [118], and

an LDP for the empirical spectral measure of a(n undeformed) GOE matrix due to Ben Arous and

Guionnet [42].

Another example appears in two recent results of Baskerville, Keating, Mezzadri, and Najnudel,

which cover finite-rank perturbations of GOE [29] and a specific ensemble of Gaussian matrices with

a variance profile, inspired by a two-layer spin-glass model of neural networks [30]. In both cases

the determinant analysis is performed through rigorous supersymmetric methods.

How do our methods differ? The model-specific results in our Theorem 1.1.1 are all corollaries

22



of a general theorem, which prove that we can obtain (1.1.2) after checking the following three

general conditions which do not use invariance. Stated informally (see Theorems 2.1.1, 2.1.2 for

complete statements):

(i) There is no problem caused by extremely large or small eigenvalues (at scale e±Nε).

(ii) The empirical measure µ̂HN concentrates about its mean E[µ̂HN ].

(iii) There exists a sequence (µN )∞N=1 of regular, deterministic probability measures which is a

mildly good approximation for (E[µ̂HN ])∞N=1.

We offer two interpretations for condition (ii). The first, more standard interpretation says it suffices

for traces of Lipschitz functions of HN to concentrate (which follows, for example, from log-Sobolev

via [103], or from Gromov-Milman concentration of compact groups). The second, more novel

interpretation holds when HN is given as a Lipschitz, convex function of some independent random

variables. As a simple example, a Wigner matrix is a linear function of N(N+1)
2 independent random

variables – namely the upper-triangular entries, which are then arranged above and below the

diagonal. As a more complicated example, one could start with some independent random variables

and mix them differently in different entries, to make a random matrix with correlations. This case

is designed to apply Talagrand’s classical concentration-of-measure results, which say that Lipschitz,

convex functions of bounded, independent random variables concentrate. By approximating the

logarithm by some Lipschitz, convex functions, and truncating the input random variables, we can

write the expected determinant almost as a Lipschitz, convex function of bounded, independent

random variables, yielding concentration. Product-measure concentration is of course now very

common in probability, but we remark that it is not so common in this corner of random matrix

theory, and that it is pleasantly surprising that it gives almost-sharp results (for example, for

Wigner matrices with 2 + ε finite moments).
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1.6 Large deviations for extreme eigenvalues

As described above, one of the goals of this thesis is to describe random matrices for which LDPs

are not available. However, some LDPs for non-invariant random matrices have recently been

established, in the following breakthrough results of Guionnet and Husson [99] and Guionnet and

Maïda [102]. We state only the real case, but all results are true in the complex case as well.

Theorem 1.6.1. [99] Let µ be a centered probability measure on R with unit variance that is sharp

sub-Gaussian, in the sense that

A := 2 sup
t∈R

1
t2

log
(∫

etxµ(dx)
)

= 1. (1.6.1)

(The condition A < ∞ is usually called sub-Gaussian; notice this is asking for more. Examples

of sharp sub-Gaussian measures include the Bernoulli and Uniform distributions, appropriately

scaled.) Let WN be a Wigner matrix associated with µ, meaning that WN has independent entries

up to symmetry with (WN )ij ∼
√

1+δij
N µ. Then the largest eigenvalue of WN satisfies an LDP at

speed N with the same rate function as that of the GOE, namely

I(x) =


+∞ if x < 2,

1
2
∫ x

2
√
y2 − 4 dy if x > 2.

For the case of non-sharp sub-Gaussian distributions (i.e., A > 1 in (1.6.1)), large-deviations

estimates are given by Augeri, Guionnet, and Husson in [15]. These estimates show that the rate

function is not the same as that of the GOE, since it is asymptotic to 1
4Ax

2 for large x.

Theorem 1.6.2. [102] Let (AN )∞N=1 and (BN )∞N=1 be two sequences of deterministic real diagonal

matrices whose empirical spectral measures µ̂AN and µ̂BN tend to compactly supported limiting

measures µA and µB, respectively, as N → ∞. Suppose that supN (‖AN‖ + ‖BN‖) < ∞, and that

the largest eigenvalues have limits λmax(AN ) → r(µA) and λmax(BN ) → r(µB), respectively (here
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r(·) is the right edge of a compactly supported probability measure). If ON is a Haar orthogonal

matrix of size N , then the largest eigenvalue of AN +ONBNO
T
N satisfies an LDP at speed N with

the good rate function

I(x) =


+∞ if x < r(µA � µB),

supθ>0{J(µA � µB, θ, x)− J(µA, θ, r(µA))− J(µB, θ, r(µB))} if x > r(µA � µB).

Here the functions J are explicit functions arising in the analysis of rank-one spherical integrals;

see (5.2.2) for the exact form.

Guionnet and Maïda give extensions to the case when AN and BN have outliers below the BBP

threshold (meaning such that λmax (AN +ONBNO
T
N )→ r(µA�µB)), and for a specific model with

more extreme outliers.

In Chapter 5, we use and extend the techniques of these papers to study large deviations of

additively deformed Wigner matrices of the form WN + DN , where WN is a sharp sub-Gaussian

Wigner matrix and DN is deterministic, usually with full rank. The results are stronger if WN is

in fact Gaussian, and even this special case was new:

Theorem 1.6.3. (M. [121]) Let WN be distributed according to the GOE, and let (DN )∞N=1 be a

sequence of deterministic real symmetric matrices whose empirical spectral measures tend to some

compactly supported limiting measure µD as N →∞ (with a mild speed-of-convergence assumption).

Suppose that the largest and smallest eigenvalues of DN tend to the right and left endpoints of µD,

respectively. Then λmax (WN +DN ) satisfies an LDP at speed N with the good rate function

I(x) =


+∞ if x < r(ρsc � µD),

supθ>0
{
J(ρsc � µD, θ, x)− θ2 − J(µD, θ, r(µD))

}
if x > r(ρsc � µD).

Surprisingly, the rate function here is not analytic: It has a second-order phase transition at some

finite xc, for reasons that remain mysterious, but are perhaps related to a localization-delocalization
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phase transition.

All of these results are proved by tilting the measure by a Laplace transform, as in the classical

proof of Cramér’s theorem. But the appropriate Laplace transform here is the (rank-one) spherical

integral defined for θ > 0 and an N ×N matrix A by

IN (A, θ) = Ee[eNθ〈e,Ae〉], (1.6.2)

where Ee integrates over vectors e uniform on the unit sphere SN−1 ⊂ RN . This is a special case

of the famous Harish-Chandra/Itzykson/Zuber (HCIZ) integral, defined for two matrices A and B

by integrating over Haar measure on the orthogonal group ON as

∫
eN Tr(OAOTB) dHaar(O). (1.6.3)

If we take B = diag(θ, 0, . . . , 0), this reduces to (1.6.2). The large-N asymptotics of (1.6.2) were

established by Guionnet and Maïda in 2005 [101], and involve the function J defined above; see

Chapter 5 for complete formulas. We mention that the asymptotics of rank-one spherical integrals

are remarkably concise, given the famous difficulty of describing the asymptotics of the full-rank

HCIZ integral [104, 127].

Future research might be able to combine these LDPs with our techniques for random-matrix

determinants to obtain new results in landscape complexity. Specifically, to study critical points of

index k, a variant of the Kac-Rice formula reduces in all of our cases to

∫
Rm

e−N
‖u‖2

2 E[|det(HN (u))|1i(HN (u))=k] du,

where i(·) is the index of a matrix, m is independent of N , and (HN (u))u∈Rm is a field of non-

invariant random matrices. We give results in this thesis for the case k = 0 (meaning local minima);

we are about to describe these, after which we will consider possibilities for k > 1 (meaning saddle

points). For pure spherical p-spin models, annealed (and quenched!) results for fixed k have been
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established in [10, 141, 12]; here we have in mind a general model for which annealed estimates are

not yet available.

If the matrix HN (u) has limiting empirical spectral measure µ∞(u), consider the set

G = {u ∈ Rm : supp(µ∞(u)) ⊆ [0,∞)}

of good u values, and restrict momentarily to the case k = 0. If the matrices HN (u) have asymp-

totically no outliers, which is true for all of our models, then G is the same (up to boundary issues)

as the set of u values for which {i(HN (u)) = 0} is a likely event. Indeed, in Chapter 2 we show

that

E[|det(HN (u))|1i(HN (u))=0] ≈


E[|det(HN (u))|] if u ∈ G,

0 if u 6∈ G

at exponential scale, and that consequently

lim
N→∞

1
N

log
∫
Rm

e−N
‖u‖2

2 E[|det(HN (u))|1i(HN (u))=0] du = sup
u∈G

{∫
log|λ|µ∞(u)(dλ)− ‖u‖

2

2

}
.

What happens when k = 1? Suppose one can show, perhaps through tilting by spherical integrals,

that λmin(HN (u)) satisfies an LDP at speed N with the good rate function I(u, ·). Then one

naturally guesses

1
N

logE[|det(HN (u))|1i(HN (u))=1] ≈


∫

log|λ|µ∞(u)(dλ)− I(u, 0) if u ∈ G,

−∞ otherwise,

and thus one guesses

lim
N→∞

1
N

log
∫
Rm

e−N
‖u‖2

2 E[|det(HN (u))|1i(HN (u))=1] du

= sup
u∈G

{∫
log|λ|µ∞(u)(dλ)− I(u, 0)− ‖u‖

2

2

}
.
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Then the complexity of index-one saddle points would be described as this variational problem,

plus simpler terms. In fact, if one could prove this, then index-k saddle points for fixed k would

likely follow in the same way: Recently, Guionnet and Husson proved that rank-k spherical integrals

approximately factor as the product of k rank-one spherical integrals [100]. As they showed, this

implies that, for several random matrix ensembles where the largest eigenvalue was already known

to satisfy an LDP at speed N with some rate function I(x), in fact the kth largest eigenvalue

satisfies an LDP at speed N with the rate function kI(x). (This phenomenon was already known

for the GOE, from [10].) This might allow one to give the complexity of index-k saddle points as

sup
u∈G

{∫
log|λ|µ∞(u)(dλ)− kI(u, 0)− ‖u‖

2

2

}

plus simpler terms. For example, for the model described in Theorem 1.3.1 above, this would give

the complexity Σk(µ, 1) of index-k critical points as

Σk(µ, 1) = 1
2[−3 + 4µ− µ2 − log(µ2)] = Σmin(µ, 1),

meaning that index-k critical points have the same total complexity for every fixed k > 0 (notice

this is the same phenomenon as exhibited in pure spherical spin glasses [10]).

Finally, we consider the case k = αN for α ∈ (0, 1). Suppose that the empirical spectral measure

µ̂HN (u) satisfies an LDP at speed N2 (or even N1+ε). If we consider the set

Gα = {u ∈ Rm : µ∞(u)((−∞, 0)) = 1− µ∞(u)((0,∞)) = α}

(which may well be a singleton set), then one guesses

1
N

logE[|det(HN (u))|1i(HN (u))=αN ] ≈


∫

log|λ|µ∞(u)(dλ) if u ∈ Gα,

−∞ otherwise,
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and thus one guesses

lim
N→∞

1
N

log
∫
Rm

e−N
‖u‖2

2 E[|det(HN (u))|1i(HN (u))=αN ] du = sup
u∈Gα

{∫
log|λ|µ∞(u)(dλ)− ‖u‖

2

2

}
.

1.7 Open questions

We end with a selection of open questions.

Question 1.7.1. Establish determinant concentration (1.1.1) when HN is the adjacency matrix

of a random d-regular graph, in any range of parameters d (either fixed or tending to infinity).

Via our theorem, it suffices to either (a) prove some version of discrete log-Sobolev for random

regular graphs, or (b) find an equality in distribution describing the adjacency matrix of a random

d-regular graph as a Lipschitz, convex function of some independent random variables (Bernoullis

seem natural, although any description would suffice).

Question 1.7.2. Describe the quenched picture for any of the models we study, i.e., compute not

limN→∞
1
N logE[Crt] but limN→∞

1
NE[log Crt].

Versions of the Kac-Rice formula allow for computation of finite moments E[Crtk], k ∈ N,

in terms determinants of the form E[
∏k
i=1 |det(H(i))|], where the H(i)’s may be correlated. Our

determinant asymptotics extend to such products; this is the motivation of Appendix A. If the

second moment matches the first squared, then one can show that the quenched picture is the same

as the annealed one (this is the approach, and the result, of Subag [141] and Auffinger-Gold [12]

for pure p-spins). But if the second moment does not match the first squared, the situation seems

largely intractable: It is not even clear that the distribution is determined by its moments. In the

physics literature, Ros, Ben Arous, Biroli, and Cammarota [136] have proposed a method they call

replicated Kac-Rice, which claims to compute the quenched asymptotics even when they do not

match the annealed. Can one make this method mathematically rigorous?

Question 1.7.3. We have suggested that zero/positive complexity is a good predictor for the
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success/failure, respectively, of local optimization algorithms like Langevin dynamics. Can one

study Langevin dynamics directly and prove this? See the work of Ben Arous-Gheissari-Jagannath

[40, 39, 41].

Question 1.7.4. The Kac-Rice formula is technically not restricted to Gaussian processes, but

the versions for non-Gaussian processes require many conditions. More importantly, the process

of conditioning the Hessian on criticality, which is of course routine in the Gaussian case, looks

prohibitively difficult for non-Gaussian processes. Can one establish an easy-to-use non-Gaussian

Kac-Rice?

Question 1.7.5. Can one study complexity of serious machine-learning models (which are often

non-Gaussian), and relate the complexity to the performance of these models?

Question 1.7.6. A technical random-matrix question: To apply our theorem on determinant con-

centration to a particular random matrix HN , we need, as input, an estimate like

P(HN has no eigenvalues in [E − e−Nε
, E + e−N

ε ]) = 1− o(1) (1.7.1)

for fixed E ∈ R. Results of this type should be true under almost no assumptions on HN (in fact,

there should usually be a gap around E of size o(N−1) with high probability, and (1.7.1) is asking

for much less). But it is not clear what such a minimal proof would be; if this result were known,

we could remove many of the regularity assumptions in our results.

Can one find techniques to prove (1.7.1) with minimal assumptions? To give a concrete example,

does it hold if HN is a sample covariance matrix with 2 + ε finite moments and E is in the bulk of

the Marčenko-Pastur law?

Question 1.7.7. For the elastic manifold, we studied the mean-field scaling where L and d are

fixed and N tends to infinity. What can be said for non-mean-field scalings where L and d tend to

infinity with N? (Or other scalings – for example, Fyodorov, Le Doussal, Rosso, and Texier studied

the scaling d = 1, N = 1, and L→ +∞ [90].) When does the Larkin phase transition persist?
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Question 1.7.8. For the soft-spins model 1
2〈u,DNu〉+VN (u), we find the phase transition between

positive and zero complexity, and establish the critical exponents governing this phase transition.

Can one find more fine-grained information? For example, in the physics literature, Fyodorov

and Nadal [91] studied the special case DN = µ Id using left- and right-tail asymptotics of the

Tracy-Widom function, and argued that (i) for every supercritical µ (not “large enough”), the

expected number of local minima in the large-N limit is not just subexponential but actually almost

one; (ii) the non-trivial phase transition occurs at the scale |µ− µc| ≈ N−1/3; and (iii) when(
µ
µc
− 1

)
N1/3 = δ > 0, the expected number of local minima as a function of δ, in the large-N

limit, approaches some limit shape that can be written using (but is not exactly) the Tracy-Widom

distribution.

What happens in the anisotropic case? In particular (i) does there exist an environment DN

such that, in the trivial phase, the expected number of local minima is subexponential but does

actually grow with N ; and (ii) what happens when the environment DN has outliers beyond the

BBP phase transition (meaning fluctuations that are not Tracy-Widom)?

Question 1.7.9. For bipartite spherical spin glasses, the complexity results we can establish are

essentially all of the form “phenomena already present in usual (single-species) spin glasses, due

to [10], also occur for the bipartite case.” Are there other complexity questions for which new

phenomena appear in the bipartite case?

Related: Consider the case of p-partite spherical spin glasses (where spins interact in p groups,

instead of the p = 2 model studied in this thesis). This is defined on the product of p spheres of

dimension order N . Likely our arguments extend to any fixed p. What happens in the non-mean-

field scaling p = pN → +∞?

Question 1.7.10. Another question in large deviations: The rank-one spherical integral (1.6.2),

which has asymptotics at scale eN per [101], can establish LDPs for extreme eigenvalues at speed N .

Can the full-rank HCIZ integral (1.6.3), which has asymptotics at scale eN2 per [104], be useful for

establishing LDPs for empirical spectral measures at speed N2? Belinschi, Guionnet, and Huang

made recent notable progress in this direction, for some matrix models arising in free probability
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[32]. It might also be helpful to interpret the HCIZ integral differently; for example see Novak’s

recent proof [127] of a longstanding physics conjecture on the relationship between the HCIZ integral,

combinatorics, and representation theory.

For concreteness, take the case of symmetric Bernoulli matrices BN . Here is a tricky observa-

tion due to Guionnet. Although the largest eigenvalue of BN satisfies an LDP with the same rate

function as GOE (as a special case of [99]), the empirical spectral measure of BN cannot satisfy

an LDP at speed N2 with the same rate function as GOE: The rate function for GOE vanishes at

δ0, but the rate function for BN cannot, since P(BN = 0) = (1
2)

N(N+1)
2 ≈ e−N

2 log 2
2 . So we do not

even have a guess for the rate function.

Question 1.7.11. The least well-formed question: What would a discrete complexity theory look

like? For example, consider the Sherrington-Kirkpatrick Hamiltonian HN : {−1,+1}N → R. There

is a natural definition of “local minimum” – namely, “switching each coordinate does not decrease

the Hamiltonian” – but it is not clear how to define an index-one saddle point, for example. Worse,

there is no Kac-Rice formula, since there are no classical derivatives. But one can still study

dynamics on the Sherrington-Kirkpatrick model; is there some scalar observable of the geometry

that should predict when these dynamics succeed or fail?

Roadmap

The organization of the disseration is as follows. In Chapter 2, based on [35], we study the deter-

minants of non-invariant random matrices and prove Theorem 1.1.1. In Chapter 3, based on [36],

we study the complexity of the elastic manifold and of soft spins in an anisotropic well, proving

Theorems 1.4.1 and 1.4.2. In Chapter 4, based on [120], we study the complexity of bipartite spin

glasses and prove Theorem 1.4.3. Finally, in Chapter 5, based on [121], we study large deviations

and prove Theorem 1.6.3.
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Chapter 2

Exponential growth of random

determinants beyond invariance

This chapter is essentially borrowed from [35], joint with Gérard Ben Arous

and Paul Bourgade, which will appear on the arXiv soon.

2.1 Introduction

2.1.1 Overview. In this paper, our goal is to study the expected absolute values of the deter-

minants of general N ×N real symmetric random matrices HN , specifically at exponential scale in

the large-N limit:

lim
N→∞

1
N

logE[|det(HN )|]. (2.1.1)

We identify two sets of simple criteria that lead to asymptotics of this type (Theorems 2.1.1 and

2.1.2), and apply them to a wide variety of matrix models.

Initiated in the 1930s, and developed early on by Turán, Fortet, Tukey, Nyquist, Rice, Riordan,

Prékopa, and others, the study of random determinants has focused on three distinct questions:

the singularity probability (that the determinant of a discrete random matrix vanishes), Gaussian
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fluctuations, and asymptotics of the type (2.1.1). We will describe this history below in greater

detail. The third direction is useful for the topological “landscape complexity” program, which

studies the geometry of high-dimensional random functions via the Kac-Rice formula, and which

motivates our present work.

Most studies in this direction have focused on the invariant Gaussian ensembles. We study ran-

dom determinants in contexts where the distribution of the matrix HN is not necessarily invariant

by orthogonal conjugacy, evaluating (2.1.1) for matrix models including Gaussian matrices with

variance profiles, large zero blocks, or even correlations; Wigner matrices and sample covariance

matrices with near-optimal 2 + ε finite moments; Erdős-Rényi graphs with parameter p > N ε/N ;

band matrices with any bandwidth W > N ε; and the classical free-convolution model A+OBOT

with O uniform on the orthogonal group. For example, denoting ρsc the semicircle density on

[−2, 2], for any E we prove that

lim
N→∞

1
N

logE[|det(WN − E)|] =
∫

log|λ− E|ρsc(λ) dλ,

whenever WN is a Wigner matrix (Corollary 2.1.3) or a random band matrix (Corollary 2.1.6),

under the above moments and bandwidth assumptions.

In the companion papers [36, 120], we use these results to study the landscape complexity of

non-invariant random functions. There, we prove formulas of Fyodorov and Le Doussal [88] on the

classical “elastic manifold” from statistical physics, which models a point configuration with local

self-interactions in a disordered environment. We also find a new phase transition, with universal

near-critical behavior, for a certain anisotropic signal-plus-noise model.

In fact, for these geometric applications we need to understand asymptotics like (2.1.1) when

the matrix HN has long-range correlations, for example when all the diagonal entries are correlated

with each other. In the last section of this paper, we show how to give exact variational formulas for

asymptotics of this type, based on the (simpler) formulas for matrices with short-range correlations.

Theorem 2.1.1 and 2.1.2 below prove that we can obtain the asymptotics (2.1.1) under three
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general conditions which do not use invariance, stated informally as follows.

(1) We can discard the contribution of extremely large and small eigenvalues (at scales eNε and

e−N
ε).

(2) Some form of concentration of the empirical spectral measure µ̂HN about its mean E[µ̂HN ]

holds.

(3) There exists a deterministic sequence (µN )∞N=1 of probability measures, sufficiently regular,

that are mildly good approximations for the mean spectral measure E[µ̂HN ].

Overall, our proof strategy is to write the determinant as an almost-continuous test function in-

tegrated against µ̂HN , regularize the logarithm using (1), prove concentration of this test statistic

about its mean using (2), and relate this mean to something more recognizable using (3). Checking

condition (1) is typically model-specific, but conditions (2) and (3) can be discussed in general.

To prove condition (2) on concentration of µ̂HN , we identify two distinct criteria, corresponding

to our general theorems:

– Either (the convexity-preserving functional case, Theorem 2.1.1) HN is built in a convexity-

preserving and Lipschitz way from arbitrary independent random variables,

– or (the concentrated input case, Theorem 2.1.2) linear statistics of HN are already known to

concentrate. This is meant to be applied if, e.g., HN satisfies log-Sobolev, or Gromov-Milman

concentration on compact groups.

To prove condition (3) regarding convergence of E[µ̂HN ], in the case of classical random matrices

the approximating sequence (µN )∞N=1 is well-known (and in fact constant): For example, one should

choose the semicircle law for Wigner matrices, or the Marčenko-Pastur law for sample covariance

models. But the good choice of µN for non-invariant Gaussian ensembles, which are the most

important matrices for applications to complexity, has only been understood recently, a consequence

of the theory of the Matrix Dyson Equation (MDE) as developed in [5, 6]. Given nice HN , the
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MDE produces a probability measure µN found by solving a constrained problem over matrices.

The existence, uniqueness, and regularity theory of the MDE is an important input for our work.

The organization of the paper is as follows: In the rest of this section, we give some history

on determinants of random matrices, then state our main results. We prove our general results,

Theorems 2.1.1 and 2.1.2, in Section 2.2, then prove our applications to matrix models in Section

2.3. In Section 2.4, we discuss determinants in the presence of long-range correlations. Finally, in

Appendix A we extend our results to product of determinants, showing

lim
N→∞

1
N

logE
[∏̀
i=1
|det(H(i)

N )|
]

=
∑̀
i=1

(
lim
N→∞

1
N

logE[| det(H(i)
N )|]

)
(2.1.2)

for any fixed ` and random matrices H(1)
N , . . . ,H

(`)
N which may be correlated with each other. This

asymptotic factoring holds regardless of the correlation structure between the H(i)
N ’s.

2.1.2 History. The earliest research on random-matrix determinants covered non-Hermitian

matrices with i.i.d. entries, discussing an extremal problem on the determinant of Bernoulli matrices

[142] (extended in [151]) and exact formulas at finite N for small moments of determinants [82,

81, 128, 132] (see also Girko’s book [97]). Later in the literature, we identify three main strands of

research on determinants.

First, one can ask for the probability that an N ×N discrete matrix (Bernoulli, say) is singular,

i.e., that its determinant is zero, for large N . In the non-Hermitian case, Komlós showed that this

probability is o(1) [110, 111]. Recently K. Tikhomirov established the long-standing conjecture

that this probability is (1
2 + o(1))N [149]; earlier exponential estimates in this direction include

[108, 144, 145, 61].

Second, one can show that the determinant, appropriately normalized, has Gaussian fluctua-

tions. In the non-Hermitian case, if the entries are Gaussian this follows from work of Goodman

[98]. Gaussianity was replaced by an exponential-tails assumption in [126] and a fourth-moment

assumption in [23]. In the Hermitian case, Gaussian matrices were studied in [67]. Gaussianity was
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relaxed to a four-moment-matching assumption in [146], then to a two-moment-matching assump-

tion in [59, 60]. Some other ensembles were treated in [63, 138], and more about determinants for

Gaussian ensembles was discussed in [56, 72].

Third, one can study the same question we do here, namely the asymptotics of E[|det(HN )|],

usually in the same context of studying complexity for high-dimensional random fields. Here we

just discuss the types of random matrices that have appeared; for a discussion of what these

prior results mean for complexity, we refer to the companion paper [36]. Fyodorov [84] studied

Gaussian matrices of type GOE + N (0, 1/N) Id using supersymmetry, and a similar model was

addressed in Auffinger et al. [10] using known large-deviations principles (LDPs) [42, 37]. Rank-

one perturbations of GOE appeared in [43], using an LDP of Maïda [118]. An upper bound for

full-rank perturbations of GOE appeared in [78], based on free probability and large deviations.

Upper and lower bounds for Gaussian matrices with a certain covariance structure were given in

[11]. The (Gaussian) real elliptic ensemble was discussed in [38], based on a new result on large

deviations for its spectral measure. Baskerville et al. cover finite-rank perturbations of GOE in [29]

and a specific ensemble of Gaussian matrices with a variance profile, inspired by a two-layer spin-

glass model, in [30]. In both cases the determinant analysis is performed through supersymmetry,

for the asymptotic spectral density and for Wegner estimates. Our corollaries 2.1.8.A, 2.1.8.B, and

2.1.9 about general Gaussian ensembles provide alternative derivations for all these results about

Hermitian matrices. These corollaries also make rigorous the analysis of random determinants by

Fyodorov and Le Doussal [88] (see [36] for corresponding complexity results).

Finally, asymptotics for a pair of determinants, in the style of (2.1.2) with ` = 2, appeared for

a particular pair of random matrices from spin glasses, closely related to correlated GOE matrices,

in [141, 12, 44]. These arguments were based on known LDPs for Gaussian ensembles.

Notations. We write ‖ · ‖ for the operator norm on elements of CN×N induced by the L2 distance

on CN . We let ‖f‖Lip = supx6=y
|f(x)−f(y)|L2
|x−y|L2

for functions f : Rm → Rn, and consider the following

three distances on probability measures on the real line (called bounded-Lipschitz, Wasserstein-1,

37



and Kolmogorov-Smirnov, respectively):

dBL(µ, ν) = sup
{∣∣∣∣∫

R
f d(µ− ν)

∣∣∣∣ : ‖f‖Lip + ‖f‖L∞ 6 1
}
,

W1(µ, ν) = sup
{∣∣∣∣∫

R
f d(µ− ν)

∣∣∣∣ : ‖f‖Lip 6 1
}
,

dKS(µ, ν) = sup{|µ((−∞, x])− ν((−∞, x])| : x ∈ R}.

We normalize the semicircle law as ρsc(dx) =
√

4−x2

2π 1x∈[−2,2] dx. We write l(µ) for the left edge

(respectively, r(µ) for the right edge) of a compactly supported measure µ. For an N×N Hermitian

matrix M , we write λmin (M) = λ1(M) 6 · · · 6 λN (M) = λmax (M) for its eigenvalues and

µ̂M = 1
N

∑N
i=1 δλi(M) for its empirical measure. We write SN for the set of all N × N realy

symmetric matrices, and � for the free (additive) convolution of probability measures.

We write BR for the ball of radius R around 0 in the relevant Euclidean space. We use (·)T for

the matrix transpose, which is distinguished both from the matrix conjugate transpose (·)∗, and

from the matrix trace Tr(·).

2.1.3 General theorem for convexity-preserving functional. The following Theorem 2.1.1

is our first general result, it applies to random matrices without any a priori concentration hypoth-

esis, but requires the tools of convex analysis, in particular results of Talagrand.

To state the hypotheses, we denote κ > 0 an arbitrarily small control parameter which does not

depend on N . Let M = MN > 1. Consider X = (X1, . . . , XM ) a random vector. We now consider

the following set of assumptions.

(I) The Xi’s are independent and real-valued.

(M) Matrix model. Let H = HN = Φ(X) where Φ : RM → SN is deterministic and Lipschitz and

Φ−1(A) is convex for any convex set A.

(E) Expectation. A sequence of probability measures µN exists satisfying the following properties.
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First,

dBL(Eµ̂Φ(X), µN ) 6 N−κ. (2.1.3)

Moreover, the µN ’s are supported in a common compact set, and each has a density µN (·) in

the same neighborhood (−κ, κ) around 0, which satisfies µN (x) < κ−1|x|−1+κ for all |x| < κ

and all N .

(C) Coarse bounds. Write (λi)Ni=1 for the eigenvalues of Φ(X). For every ε > 0,

lim
N→∞

1
N

logE
[
N∏
i=1

(1 + |λi|1|λi|>eNε )
]

= 0, (2.1.4)

lim
N→∞

P(Φ(X) has no eigenvalues in [−e−Nε
, e−N

ε ]) = 1. (2.1.5)

In addition, there exists δ > 0 such that

lim sup
N→∞

1
N logN logE[|det(HN )|1+δ] <∞. (2.1.6)

(S) Spectral stability. Let (Xcut)i = Xi1|Xi|<N−κ/‖Φ‖Lip . We have

lim
N→∞

1
N logN logP

(
dKS(µ̂Φ(X), µ̂Φ(Xcut)) > N−κ

)
= −∞. (2.1.7)

Theorem 2.1.1. (Convexity-preserving functional) Under the assumptions (I), (M), (E),

(C), (S), we have

lim
N→∞

( 1
N

logE[|det(HN )|]−
∫
R

log |λ|µN (dλ)
)

= 0. (2.1.8)

Comments on the result. (i) A polynomial rate in (2.1.4) is enough to give a polynomial rate of

convergence ∣∣∣∣ 1
N

logE[|det(HN )|]−
∫
R

log|λ|µN (dλ)
∣∣∣∣ 6 N−ε
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for some ε > 0 and N > N0(ε). Indeed, an examination of the proof shows that ε depends only on

κ and the polynomial rate in (2.1.4), but N0(ε) also depends on the rates of convergence in (2.1.5)

and (2.1.7), and on the permissible values of δ and the value of the lim sup in (2.1.6).

(ii) The matrix HN does not need to be centered. As an elementary example, we can choose

HN = WN − E for WN a Wigner matrix and obtain concentration around
∫
R log|λ− E|ρsc(λ) dλ;

see Corollary 2.1.3 below.

(iii) The proof uses Talagrand’s concentration inequality for product measures. We want to

recognize the determinant almost as a Lipschitz, convex function of independent, bounded ran-

dom variables. Ideally these would be the Xi’s, but they are not bounded; however, we truncate

them using assumption (S). The functional H = Φ(X) gives the Lipschitz, convex condition, after

regularizing the logarithm using assumption (C).

Comments on the assumptions. We discuss briefly why our assumptions are reasonable and close

to optimal. In our applications, Φ is linear so Assumption (M) is trivially satisfied, but Φ is also

allowed to create correlations between the entries in a nonlinear fashion. Equation (2.1.5) avoids

a non-trivial kernel, an obviously necessary condition for (2.1.8). Equation (2.1.6) asks for slightly

more integrability than finiteness of lim supN−1 logE[|detHN |] which is implied by the result and

assumption (E). In Section 2.3.10 we show the importance (2.1.4) (which is a constraint on large

eigenvalues) and Assumption (S) (which essentially states that the spectrum should not depend

too much on a small number of Xi’s): for each of these, we give an example of a distribution on

matrices satisfying every other assumption but not this one, for which the result of the theorem

fails.

2.1.4 General theorem for concentrated input. Here we consider the problem of exponential

growth for random matrices HN that already satisfy some concentration property directly, without

having to cut the tails and apply a result of Talagrand as in (the proof of) Theorem 2.1.1. For

example, in applications we will take matrices whose upper triangles satisfy a log-Sobolev inequal-

ity (even if correlated), or Gromov-Milman-type concentration. We remark that the dichotomy
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in Theorems 2.1.1 and 2.1.2 – namely, proving the similar results, once under product-measure

assumptions and once under log-Sobolev-style assumptions – first appeared in the classic concen-

tration paper of Guionnet-Zeitouni [103]. We have termed these models “concentrated input,” to

contrast with the previous section’s “convexity-preserving functional” where HN is written as Φ(X)

and concentration is provided by convexity-preserving properties of Φ (and tail bounds). In this

section, we will therefore consider HN directly. We will also replace some of the assumptions above

with the following.

(W) Wasserstein-1. A sequence of probability measures µN exists satisfying the following proper-

ties. First,

W1(Eµ̂HN , µN ) 6 N−κ. (2.1.9)

Moreover, the µN ’s are supported in a common compact set, and each has a density µN (·) in

the same neighborhood (−κ, κ) around 0, which satisfies µN (x) < κ−1|x|−1+κ for all |x| < κ

and all N .

(L) Concentration for Lipschitz traces. There exists ε0 > 0 with the following property: For every

ζ > 0, there exists cζ > 0 such that, whenever f : R→ R is Lipschitz, we have for every δ > 0

P
(∣∣∣∣ 1
N

Tr(f(HN ))− 1
N

E[Tr(f(HN ))]
∣∣∣∣ > δ

)
6 exp

(
− cζ
Nζ

min
{(

Nδ

‖f‖Lip

)2
,

(
Nδ

‖f‖Lip

)1+ε0
})

.

(2.1.10)

On a first pass readers can drop the N−ζ factor in (2.1.10). It is included because, for Gaussian

matrices as in Section 2.1.9, our assumption on the correlation structure implies (2.1.10) for every

ζ > 0 but not necessarily for ζ = 0.

Theorem 2.1.2. (Concentrated input) Under the assumptions (W), (L), and the gap assump-

tion (2.1.5), we have

lim
N→∞

( 1
N

logE[|det(HN )|]−
∫
R

log|λ|µN (dλ)
)

= 0.
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As in Theorem 2.1.1, by examining the proof one can find a small polynomial rate N−ε in

Theorem 2.1.2.

Compared to [103], we do not require bounded entries in Theorem 2.1.1, our matrix models

are more general, and we consider logarithmic singularities. On the other hand, [103] identifies the

correct scale of fluctuations, analogous to a rate of convergence of order N−1 in (2.1.8), for test

functions without singularities.

2.1.5 Wigner matrices. We now discuss determinant asymptotics for Wigner matrices WN

with 2 + ε finite moments. This is almost optimal, up to the ε, in the sense that E(|W12|2) = +∞

implies E[|det(WN )|] = +∞ (we give a short proof of this fact in Section 2.3.3 below). It would be

interesting to study the case of Wigner matrices with exactly two finite moments, or the intermediate

regime of an N ×N matrix with 2 + εN finite moments as εN → 0.

Fix some ε > 0, and let µ be a centered probability measure on R with 2+ε finite moments and

unit variance. Let WN be a real symmetric N ×N Wigner matrix associated with µ, by which we

mean that the entries of
√
NWN are independent up to symmetry and each distributed according

to µ. The following corollary uses Theorem 2.1.1.

Corollary 2.1.3. (Wigner matrices with 2 + ε moments) For every E ∈ R we have

lim
N→∞

1
N

logE[|det(WN − E)|] =
∫
R

log|λ− E|ρsc(λ) dλ.

An examination of the proof shows local uniformity in E, meaning that for every compact

K ⊂ R we have

lim
N→∞

sup
E∈K

( 1
N

logE[|det(WN − E)|]−
∫
R

log|λ− E|ρsc(λ) dλ
)

= 0.

Remark 2.1.4. One would also be interested in results of the form

lim
N→∞

1
N

logE[|det(WN +DN )|] =
∫
R

log|λ|(ρsc � µD)(dλ), (2.1.11)
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where (DN )∞N=1 is a sequence of deterministic matrices whose empirical measures tend to some

compactly-supported µD (at some polynomial speed and without outliers, say). Our techniques could

likely be extended to prove such a result under the assumption of 2 + ε moments on the Wigner

matrices. We do not pursue this direction further here; however, in the companion paper [36], we

prove (2.1.11) with a different approach when WN is a GOE matrix. For a related problem, see the

free-addition model below, in Corollary 2.1.10.

2.1.6 Erdős-Rényi matrices. We now consider Erdős-Rényi matrices with near-optimal spar-

sity parameter p > N ε/N , i.e., when each vertex has expected degree N ε. It is classical that the

limiting spectral distribution of such matrices is semicircular as long as p = ω(1/N) (see, e.g.,

[150]), but not semicircular anymore if p = α/N for α fixed (see, e.g., [31]).

Fix some ε > 0, and let HN be an N ×N Erdős-Rényi random matrix with parameter 1− ε >

pN > Nε

N . scaled so that the bulk eigenvalues are order one. This means that the entries are

independent up to symmetry and

(HN )ij = 1√
NpN (1− pN )


1 with probability pN ,

0 with probability 1− pN .

The following corollary uses Theorem 2.1.1.

Corollary 2.1.5. (Erdős-Rényi matrices with p > N ε/N) For any E ∈ R with |E| 6= 2 we

have

lim
N→∞

1
N

logE[|det(HN − E)|] =
∫
R

log|λ− E|ρsc(λ) dλ.

This result is locally uniform for E away from the edges, meaning E in any compact subset of

R \ {−2, 2}.

2.1.7 Band matrices. In this section we consider random band matrices HN , i.e., matrices

whose (i, j)th entry is zero unless i and j are less than some W apart. Many statistics of HN are
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believed to undergo a phase transition at W ∼ N1/2. For example, the eigenvectors are supposed

to be localized on o(N) sites for W � N1/2 and delocalized for W � N1/2. However, we establish

that the determinant asymptotics do not see this phase transition: They are the same as long as

W → +∞ polynomially in N . For a full discussion, we direct the reader to [57].

Let µ be a centered probability measure with unit variance that has subexponential tails, in

the sense that there exist constants α, β > 0 such that, if X ∼ µ, then

P(|X| > tα) 6 βe−t

for all t > 0. Suppose also that µ has a bounded density µ(·). Fix any ε > 0. Let HN be an

N ×N band matrix with bandwidth W = WN > N ε corresponding to µ. This means that HN has

independent entries up to symmetry with

(HN )ij


= 0 if ‖i− j‖ > W,

∼ X√
2W+1 if ‖i− j‖ 6W.

(Here we take periodic distance ‖i − j‖ = min(|i− j|, N − |i− j|).) The following corollary uses

Theorem 2.1.1.

Corollary 2.1.6. (One-dimensional band matrices with bandwidth W > N ε) Under the

above assumptions,

lim
N→∞

1
N

logE[|det(HN − E)|] =
∫
R

log|λ− E|ρsc(λ) dλ.

This result is locally uniform in E.

We now comment on the significance of this result. In the companion paper [36], we solve a

problem of Fyodorov-Le Doussal [88] on a model called the “elastic manifold.” They consider a

mean-field version of this model, corresponding to block-banded random matrices with bandwidth

order N , and find the “Larkin mass” separating ordered and disordered phases. An important open
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problem is the behavior of the elastic manifold beyond mean field, when the corresponding random

matrix is block-banded with sublinear bandwidth. It does not seem to be clear in which regimes

this Larkin transition should persist, but Corollary 2.1.6 may suggest that the transition remains

for any polynomial bandwidth.

Comment on the assumptions. We require subexponential tails in order to use the bulk local

law of Erdős et al. [77] and the extreme-eigenvalue estimates of Benaych-Georges/Péché [46]. The

bounded density lets us prove the Wegner estimate (2.1.5) to control eigenvalues close to 0, with

the Schur complement formula. We believe that the conclusion holds under weaker assumptions.

2.1.8 Sample covariance matrices. Let µ be a centered probability measure on R with unit

variance, finite moment of order 2 + ε for some ε > 0. We assume µ has density f = e−g with f

smooth enough in the sense that, for any a > 1, there exists Ca > 0 such that for any s ∈ R

|f̂(s)|+ |f̂g′′(s)| 6 Ca
(1 + s2)a . (2.1.12)

Let Yp,N be a p×N = pN ×N matrix whose entries are independent copies of µ. Suppose that

γ = lim
N→∞

pN
N
∈ (0, 1].

If γ < 1, we require a mild speed-of-convergence assumption

∣∣∣∣γ − pN
N

∣∣∣∣ 6 N−ε (2.1.13)

for some ε > 0; if γ = 1, then for technical reasons we require pN = N , i.e., we require the matrices

to be exactly square rather than asymptotically square. Write µMP,γ for the Marčenko-Pastur

distribution

µMP,γ(dx) =

√
(bγ − x)(x− aγ)

2πγx 1[aγ ,bγ ] dx (2.1.14)

where aγ = (1−√γ)2, bγ = (1 +√γ)2.
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Proposition 2.1.7. (Sample covariance matrices with 2 + ε moments) Under the above

assumptions, for every E ∈ R, we have

lim
N→∞

1
pN

logE
[∣∣∣∣det

( 1
N
Yp,N (Yp,N )T − E

)∣∣∣∣] =
∫

log|λ− E|µMP,γ(λ) dλ.

We call this a “proposition” instead of a “corollary” because it is not a direct consequence of

our theorems, but rather can be proved in a similar way. We give details in Section 2.3.6. The

proof also shows, as usual, that the limit holds locally uniformly in E.

Proposition 2.1.7 complements a 1989 result of Dembo [68], who gave an exact formula at finite

N for the averaged determinant in the special case E = 0, without requiring the assumption of a

bounded density. In our normalization, he showed by a combinatorial method that

E
[∣∣∣∣det

( 1
N
Yp,N (Yp,N )T

)∣∣∣∣] = E
[
det
( 1
N
Yp,N (Yp,N )T

)]
= N !
Np(N − p)! ,

and one can check from the known log-potential of the Marčenko-Pastur law that

lim
N→∞

1
N

log
(

N !
Np(N − p)!

)

is the same as given by our proposition.

2.1.9 Gaussian matrices with a (co)variance profile. Let HN be an N×N real symmetric

Gaussian matrix, possibly with a mean, a variance profile, and/or correlated entries, satisfying the

technical assumptions below. These are essentially the assumptions needed for the local law of

Erdős et al. [75] which we will use in the proof. We first give an easier statement for matrices

with independent entries up to symmetry (Corollary 2.1.8.A), then a more involved statement for

matrices with correlations (Corollary 2.1.8.B). In the statement, we decompose HN = AN + WN

where AN = E[HN ]. These corollaries use Theorem 2.1.2.

In the following mean-field conditions, the arbitrary parameter p > 0 is fixed.
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(B) Bounded mean. We have supN ‖AN‖ <∞.

(F) Flatness. For each N ,

T ∈ CN×N , T positive semi-definite =⇒ 1
p

Tr(T )
N

6 E[WNTWN ] 6 pTr(T )
N

.

Let µN be the measure from the size-N Matrix Dyson Equation, that is, the measure with

density µN (·) whose Stieltjes transform at z ∈ H is 1
N Tr(MN (z)), where MN (z) is the (unique,

deterministic) solution to the following constrained equation over CN×N :

IdN×N +(z IdN×N −AN + E[WNMN (z)WN ])MN (z) = 0

subject to ImMN (z) = MN (z)−MN (z)∗

2i > 0 in the sense of quadratic forms.

Corollary 2.1.8.A. (Gaussian matrices with a variance profile) If HN has independent

entries up to symmetry, then under assumptions (B) and (F) we have

lim
N→∞

( 1
N

logE[|det(HN )|]−
∫
R

log|λ|µN (λ) dλ
)

= 0.

The following assumptions are needed ifHN has correlations among its entries beyond the symmetry

constraints.

(wF) Weak fullness. Whenever T ∈ RN×N is real symmetric,

E
[
(Tr(BW ))2

]
> N−1−p Tr(B2).

(The p = 0 case is called “fullness” in [5].)

(D) Decay of correlations. Write κ for multivariate cumulants (for any number of arguments), and

consider the distance on subsets of J1, NK2 given by d(A,B) = min{min{|α− β|,
∣∣αt − β∣∣} :

α ∈ A, β ∈ B} where (·)t switches the elements of an ordered pair. For the order-two
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cumulants we assume

|κ(f1(WN ), f2(WN ))| 6 C

1 + d(supp f1, supp f2)s ‖f1‖2‖f2‖2

for some s > 12 and all L2 functions f1, f2 on N × N matrices. For order-k cumulants,

k > 3, we consider, for any L2 functions f1, . . . , fk, the complete graph on {1, . . . , k} with the

edge-weights d({i, j}) = d(supp fi, supp fj). Writing Tmin for the minimal spanning tree on

this graph (i.e., smallest sum of edge weights) and lifting covariance to edges as κ({i, j}) =

κ(fi, fj), we assume

|κ(f1(WN ), . . . , fk(WN ))| 6 Ck
∏

e∈E(Tmin)
|κ(e)|.

(In fact, our results hold under some weaker correlation-decay conditions that are longer to

state; see [75, Example 2.12].)

Corollary 2.1.8.B. (Gaussian matrices with a (co)variance profile) Under assumptions

(B), (F), (wF), and (D), we have

lim
N→∞

( 1
N

logE[|det(HN )|]−
∫
R

log|λ|µN (λ) dλ
)

= 0.

Corollary 2.1.8.A is an immediate consequence of Corollary 2.1.8.B, because it is easy to check

that (F) implies both (wF) and (D) if HN has independent entries up to symmetry. In Section

2.3.7 we therefore only prove Corollary 2.1.8.B.

In some cases one can show that the sequence (µN )∞N=1 has a limit µ∞, and obtain

lim
N→∞

1
N

logE[|det(HN )|] =
∫

log|λ|µ∞(dλ).

Notice this does not follow from our assumptions, because we do not assume any consistency in

N . For example, this corollary applies to the contrived example HN = GOE + (−1)N Id. In the
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companion paper [36], we show how to use the (well-established) stability theory of the Matrix

Dyson Equation to find a limit µ∞ when it exists.

2.1.10 Block-diagonal Gaussian matrices. In this section, we are interested in Gaussian

random matrices with large zero blocks. These are not covered by Corollary 2.1.8.B, since the

“flatness” assumption there implies that all entries have variance in some [ cN ,
C
N ]. In the landscape

complexity program, such block-diagonal matrices describe random functions whose components

in certain directions are independent of those in other directions. In the companion paper [36], we

study one such random function from statistical physics, called the “elastic manifold.”

Consider matrices HN = AN + WN , with AN = E[HN ], that have the following special form.

Fix once and for all some K ∈ N (the number of blocks), and consider matrices in RK×K ⊗RN×N ,

i.e., matrices with K2 blocks each of size N ×N . Write Eii for the matrix with a one in the (i, i)th

entry and zeros otherwise; depending on the context this will be either an N×N matrix or a K×K

matrix.

(MS) Bounded mean structure. Consider a deterministic triangular array (ai)Ni=1 = (ai,N )Ni=1 with

each ai ∈ RK×K , and define

AN =
N∑
i=1

ai ⊗ Eii.

In particular AN can only have nonzero entries on the diagonals of each block. Assume

sup
N
‖AN‖ <∞.

(MF) Mean-field randomness in diagonal blocks. The Gaussian random matrix WN has the form

WN =
K∑
i=1

Eii ⊗Xi =



X1 0 · · · 0

0 X2 · · · 0
...

... . . . ...

0 0 · · · XK


,
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where the Xi’s are independent N×N Gaussian random matrices, each of which has centered

independent entries up to symmetry. Write x(i)
jk for the (j, k)th entry of Xi and s

(i)
jk for its

variance. For some parameter p, each i ∈ J1,KK, and each j, k ∈ J1, NK, we have

s
(i)
jk 6

p

N
, s

(i)
jj >

1
pN

.

Notice the lower bound is only along the diagonal.

(R) Regularity of MDE solution. Given r = (r1, . . . , rN ) ∈ (CK×K)N , define

Si[r] =
N∑
k=1

K∑
j=1

s
(j)
ik EjjrkEjj ∈ CK×K (2.1.15)

for each i ∈ J1, NK. The MDE in this context is a system of N coupled equations over

K × K matrices; we seek the unique solution m(z) = m(N)(z) = (m1(z), . . . ,mN (z)) =

(m(N)
1 (z), . . . ,m(N)

N (z)) ∈ (CK×K)N to

IdK×K +(z IdK×K −ai + Si[m(z)])mi(z) = 0

subject to Immi(z) > 0 as a quadratic form.
(2.1.16)

Consider the probability measure µN on R whose Stieltjes transform is given at the point z

by 1
NK

∑N
j=1 Trmj(z).

Assume that each µN admits a density with respect to Lebesgue measure, and that these

densities are bounded in L∞, uniformly over N .

The following corollary uses Theorem 2.1.2.

Corollary 2.1.9. (Block-diagonal Gaussian matrices) Under assumptions (MS), (MF), and

(R), we have

lim
N→∞

( 1
NK

logE[|det(HN )|]−
∫
R

log|λ|µN (λ) dλ
)

= 0.

(The normalization is 1
NK because HN is an NK ×NK matrix.)
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In applications to landscape complexity, the description of these measures µN via the MDE is

very important to prove properties of the limit measures µ∞. For example, in our companion paper

[36], we use this MDE description to identify a crucial convexity property in a variational problem.

2.1.11 Free addition. Let (AN )∞N=1, (BN )∞N=1 be a sequence of deterministic, N × N , real

diagonal matrices, whose empirical measures tend to some µA, µB respectively. We will be interested

in the random matrix AN +ONBNO
T
N , where ON is sampled from Haar measure on the orthogonal

group ON .

We require the following assumptions.

– The measures µA and µB admit densities ρA and ρB, respectively. These densities have single

nonempty interval supports [EA−, EA+] and [EB− , EB+ ], and each density is strictly positive on

the interior of its support.

– Each measure µA and µB has a power-law behavior with exponent in (−1, 1) at each of its

edges; that is, there exist δ > 0 and exponents −1 < tA−, t
B
−, t

A
+, t

B
+ < 1 such that, for some

C > 1,

C−1 6
ρA(x)

(x− EA−)tA−
6 C for all x ∈ [EA−, EA− + δ],

C−1 6
ρB(x)

(x− EB− )tB−
6 C for all x ∈ [EB− , EB− + δ],

C−1 6
ρA(x)

(EA+ − x)tA+
6 C for all x ∈ [EA+ − δ, EA+],

C−1 6
ρB(x)

(EB+ − x)tB+
6 C for all x ∈ [EB+ − δ, EB+ ].

– One of the measures µA and µB has a bounded Stieltjes transform.

– The eigenvalues (ai)Ni=1 = (a(N)
i )Ni=1 of AN , ordered increasingly, are close to the classical
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particle locations a∗i defined by

a∗i = inf
{
s :
∫ s

−∞
µA(dy) = i/N

}

in the sense that for any c > 0, sup16i6N |ai − a∗i | 6 N−1+c for N sufficiently large. The

analogous condition also holds for the eigenvalues of BN .

For example, all of these assumptions are satisfied if µA is the semicircle law and µB is either a

uniform measure, the Marčenko-Pastur law, or the semicircle law; and if AN and BN store the

relevant 1
N -quantiles.

The following corollary uses Theorem 2.1.2.

Corollary 2.1.10. (Free addition) If ON is chosen randomly from the Haar measure on the

orthogonal group ON , then whenever E is not an edge of µA � µB, we have

lim
N→∞

1
N

logE[
∣∣∣det(AN +ONBNO

T
N − E)

∣∣∣] =
∫
R

log|λ− E|(µA � µB)(λ) dλ.

This result is locally uniform in E away from the edge, meaning uniform in any compact subset of

R \ {l(µA � µB), r(µA � µB)}.

Comment on the assumptions. For the proof, we check the assumptions of the concentrated-

input Theorem 2.1.2 using the local law of Bao-Erdős-Schnelli [22] and the fixed-energy universality

of Che-Landon [66]. For concise writing, the assumptions we state here are a bit stronger than “the

union of the assumptions of these two papers,” but in fact this union suffices for Corollary 2.1.10.

In fact, our result likely holds under even weaker assumptions than required in these papers, which

handle more fine-grained questions.
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2.2 Proofs of determinant asymptotics

2.2.1 Proof of Theorem 2.1.1. The proof depends on a careful tuning of many N -dependent

parameters; in the next section we define these parameters and prove some estimates that are

common to both the upper and lower bounds. In the following subsections we then prove these

upper and lower bounds in order.

2.2.1.1 Definitions and common estimates. Let κ be as in the assumptions (i.e., given to

us), and write K, η, t, wb, pb for some N -dependent parameters. In fact we will choose



K = eN
ε for some ε small enough (ε = κ2/16 suffices),

η = N−κ/2,

t = N−κ/4,

wb = N−κ/4,

pb = N−κ
2/8,

(2.2.1)

but we find it more transparent to work with the names K, η, and so on for the bulk of the proof,

checking only at the end that these specific choices make the error estimates useful. We will work

with the following regularizations of the logarithm:

logη(λ) = log|λ+ iη|,

logKη (λ) = min(logη(λ), logη(K)).
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Let b = bN : R→ R be some smooth, even, nonnegative function that is identically one on [−wb, wb],

vanishes outside of [−2wb, 2wb], and is 1
wb

-Lipschitz. Consider the following events:

Egap = {Φ(X) has no eigenvalues in [−e−Nε
, e−N

ε ]},

Ess = {dKS(µ̂Φ(X), µ̂Φ(Xcut)) 6 N−κ},

Econc =
{∣∣∣∣∫ logKη d(µ̂Φ(Xcut) − E[µ̂Φ(Xcut)])

∣∣∣∣ 6 t},
Eb =

{∫
bdµ̂Φ(X) 6 pb

}
.

(2.2.2)

It turns out that all of these events are likely. For Egap and Ess this is by assumption; we will prove

that Econc and Eb are likely below.

Now we collect some estimates which will be useful for both the upper and lower bounds.

Lemma 2.2.1. We have

∣∣∣∣∫ logKη d(µ̂Φ(X) − µ̂Φ(Xcut))
∣∣∣∣1Ess 6 N

−κ log
(

1 + K2

η2

)
.

Proof. The proof of [55, Lemma C.2] shows that, if µ̂A and µ̂B are empirical measures of matrices

A and B (which have the same size as each other) and if f is a test function of bounded variation,

then ∣∣∣∣∫ f dµ̂A −
∫
f dµ̂B

∣∣∣∣ 6 ‖f‖TV · dKS(µ̂A, µ̂B).

Then the result follows from the computation ‖ logKη ‖TV = log
(
1 + K2

η2

)
and the definition of

Ess.

Lemma 2.2.2. With

ε1(N) := N−κ log
(

1 + K2

η2

)
+ 2‖ logKη ‖∞P((Ess)c) +

( 1
2η + ‖ logKη ‖∞

)
N−κ,

we have ∣∣∣∣∫ logKη d(E[µ̂Φ(Xcut)]− µN )
∣∣∣∣ 6 ε1(N).
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Proof. First, by inserting 1Ess and using Lemma 2.2.1, we find

∣∣∣∣∫ logKη d(E[µ̂Φ(Xcut)]− E[µ̂Φ(X)])
∣∣∣∣ 6 N−κ log

(
1 + K2

η2

)
+ 2‖ logKη ‖∞P((Ess)c).

Next, since logKη is 1
2η -Lipschitz, (2.1.3) yields

∣∣∣∣∫ logKη d(E[µ̂Φ(X)]− µN )
∣∣∣∣ 6 ( 1

2η + ‖ logKη ‖∞
)
dBL(E[µ̂Φ(X)], µN ) 6

( 1
2η + ‖ logKη ‖∞

)
N−κ.

Both equations above conclude the proof.

Lemma 2.2.3. Let t0(N) = 24
√

2π/(ηN
1
2 +κ). If t > t0(N), then

P((Econc)c) 6 12 exp
(
−(t− t0(N))2η2N1+2κ

288

)
.

Proof. The function logKη is not convex (it is convex on [−η, η] and concave outside this interval).

But it is a linear combination of three convex functions. Indeed, for i = 1, 2, 3, consider logi =

logi,η,K : R→ R given by

log1(x) =



− x
2η −

1
2 + logη(η) if x 6 −η,

logη(x) if − η 6 x 6 η,

x
2η −

1
2 + logη(η) if x > η,

log2(x) =


x
2η x 6 η,

logKη (x) + 1
2 − logη(η) if x > η,

log3(x) =


− x

2η if x > −η,

logKη (x) + 1
2 − logη(η) if x 6 −η.

Notice that logKη =
∑3
i=1 logi, that log1 is convex while log2 and log3 are concave, and that each
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logi is 1
2η -Lipschitz. For each i, consider the function fi : [− N−κ

‖Φ‖Lip
, N−κ

‖Φ‖Lip
]M → R given by

fi(X) = (−1)1i 6=1
1
N

tr(logi(Φ(X))) = (−1)1i 6=1

∫
R

logi(λ)µ̂Φ(X)(dλ).

The factors of −1 are for convenience, so that each fi will be convex. Notice that

P((Econc)c) = P
(∣∣∣∣∣

3∑
i=1

(−1)1i 6=1(fi(X)− E[fi(X)])
∣∣∣∣∣ > t

)
6

3∑
i=1

P
(
|fi(X)− E[fi(X)]| > t

3

)
. (2.2.3)

Each fi is a Lipschitz, convex function of the many independent compactly supported variables

X1, . . . , XM . Thus we can apply concentration-of-measure results of Talagrand. It will be useful

to factor fi = gi ◦ Φ, where gi : SN → R is given by gi(T ) = (−1)1i 6=1 1
N tr(logi(T )).

Indeed, since logi is (2η)−1-Lipschitz, we know that gi is (η
√

2N)−1-Lipschitz (see, e.g., [7,

Lemma 2.3.1], and thus fi is ‖Φ‖Lip/(η
√

2N)-Lipschitz. Furthermore, since (−1)1i 6=1 logi is convex,

by Klein’s lemma (see, e.g., [103, Lemma 1.2]) gi is also convex; since we assumed that Φ pulls back

convex sets to convex sets, we conclude that {X : fi(X) 6 a} is a convex set of [− N−κ

‖Φ‖Lip
, N−κ

‖Φ‖Lip
]M

for every a ∈ R. Then [143, Theorem 6.6] implies that

P(|fi(X)−Mfi | > t) 6 4 exp
(
− t

2η2N1+2κ

32

)

where Mfi is a median of fi(X). We conclude using (2.2.3) and the estimate

|E(fi(X))−Mfi | 6 E|fi(X)−Mfi | 6 4
∫ ∞

0
exp

(
− t

2η2N1+2κ

32

)
dt = 8

√
2π

ηN
1
2 +κ

= 1
3 t0(N)

to substitute the median with the mean.

2.2.1.2 Upper bound. After establishing one more estimate, we prove the upper bound of

Theorem 2.1.1.
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Lemma 2.2.4. With the parameter choices (2.2.1), we have

lim
N→∞

1
N

logE[|det(HN )|(1− 1Ess1Econc)] = −∞.

Proof. Writing E = Ess ∩ Econc, for any δ > 0 Hölder’s inequality gives

1
N

logE[|det(HN )|1Ec ] 6
1

(1 + δ)N logE[|det(HN )|1+δ] + δ

(1 + δ)N logP(Ec).

For δ satisfying (2.1.6), the first term is O(logN). Concerning the second term, we have

1
N

logP(Ec) 6 1
N

log[P((Econc)c) + P((Ess)c)] 6 −C logN,

for any C > 0 and N > N0(C), where the last inequality follows from Lemma 2.2.3, our parameter

choices (2.2.1), and our assumption (2.1.7).

Proof of upper bound. From our assumptions on µN we have lim infN→∞
∫

log|λ|µN (dλ) > −∞.

Thus, by Lemma 2.2.4, it suffices to prove

lim sup
N→∞

( 1
N

logE[|det(HN )|1Ess1Econc ]−
∫

log|λ|µN (dλ)
)
6 0. (2.2.4)

On the events Ess and Econc, Lemmas 2.2.1 and 2.2.2 give us

∫
logKη dµ̂Φ(X)

=
∫

logKη d(µ̂Φ(X) − µ̂Φ(Xcut)) +
∫

logKη d(µ̂Φ(Xcut) − E[µ̂Φ(Xcut)]) +
∫

logKη E[µ̂Φ(Xcut)]

6 N−κ log
(

1 + K2

η2

)
+ t+

∫
logKη E[µ̂Φ(Xcut)] 6 2ε1(N) + t+

∫
logKη (λ)µN (dλ).
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We use this estimate to obtain

1
N

logE[|det(HN )|1Ess1Econc ] = 1
N

logE
[(

N∏
i=1
|λi|1|λi|6K

)(
N∏
i=1
|λi|1|λi|>K

)
1Ess1Econc

]

6
1
N

logE
[
eN
∫

logKη dµ̂Φ(X)

(
N∏
i=1

(1 + |λi|1|λi|>K)
)
1Ess1Econc

]

6 2ε1(N) + t+ 1
N

logE
[
N∏
i=1

(1 + |λi|1|λi|>K)
]

+
∫

logKη dµN .

From our choice of parameters (2.2.1) and the assumption (2.1.4), this last term is
∫

logKη dµN+o(1).

Furthermore, since the µN ’s are supported on a common compact set and K increases with N , we

have
∫

logKη dµN =
∫

logη dµN for N large enough. Thus to prove (2.2.4) we need only show

lim sup
N→∞

∫
(logη(λ)− log|λ|)µN (dλ) 6 0. (2.2.5)

To show this, we use ∫ ∞
κ

(logη(λ)− log|λ|)µN (dλ) 6 1
2 log

(
1 + η2

κ2

)

which tends to zero since η does, and

∣∣∣∣∫ κ

−κ
(logη(λ)− log|λ|)µN (dλ)

∣∣∣∣ 6 κ−1
∫ κ

−κ
(log|λ| − logη(λ))|λ|−1+κ dλ,

which tends to zero by dominated convergence. This completes the proof of (2.2.5) and thus of the

upper bound.

2.2.1.3 Lower bound. We first collect some estimates.

Lemma 2.2.5. We have

1
N

logE[eN
∫

(log|λ|−logη(λ))µ̂Φ(X)(dλ)1Egap1Ess1Econc ] > −ε2(N),
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where

ε2(N) = pb
2 log(1 + e2Nε

η2) + η2

2w2
b

− 1
N

logP(Egap, Ess, Econc, Eb).

Proof. On Egap, for any eigenvalue λ of Φ(X) we have

log|λ| − logη(λ) = −1
2 log

(
1 + η2

λ2

)
> −1

2 log(1 + e2Nε
η2).

Similarly, since 1− b(λ) 6 1|λ|>wb and log(1 + x) 6 x for x > 0, we have

∫
(log|λ| − logη(λ))(1− b(λ))µ̂Φ(X)(dλ) > −1

2 log
(

1 + η2

w2
b

)
> − η2

2w2
b

.

Thus

E[eN
∫

(log|·|−logη)dµ̂Φ(X)1Egap1Ess1Econc1Eb ]

> e−
Npb

2 log(1+e2Nεη2)E[eN
∫

(log|·|−logη)(1−b)dµ̂Φ(X)1Egap1Ess1Econc1Eb ]

> e−
Npb

2 log(1+e2Nεη2)e
−Nη

2

2w2
b P(Egap, Ess, Econc, Eb),

which concludes the proof.

Lemma 2.2.6. For N large enough we have

P((Eb)c) 6
2
pb

(
N−κ

wb
+ (2wb)κ

κ2

)
.

Proof. By our choice (2.2.1) of wb tending to zero, µN admits a density on [−2wb, 2wb] for N large

enough. Since b(λ) is 1
wb

-Lipschitz and bounded above by 1|λ|62wb , we use (2.1.3) to find

E
[∫

b dµ̂Φ(X)

]
6
( 1
wb

+ 1
)
dBL(E[µ̂Φ(X)], µN ) + µN ([−2wb, 2wb]) 6

2N−κ

wb
+ 1
κ

∫ 2wb

−2wb
|x|−1+κ dx.

The conclusion follows by evaluating this integral and applying Markov’s inequality.
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Proof of lower bound. Lemmas 2.2.1, 2.2.2, and 2.2.5 show that N−1 logE[|det(HN )|] is larger than

1
N

logE
[
eN(

∫
(log|·|−logη)dµ̂Φ(X)+

∫
logKη d(µ̂Φ(X)−µ̂Φ(Xcut)+µ̂Φ(Xcut)−E[µ̂Φ(Xcut)]))1Egap1Ess1Econc

]
+
∫

logKη dE[µ̂Φ(Xcut)]

>
1
N

logE[eN
∫

(log|·|−logη)dµ̂Φ(X)1Egap1Ess1Econc ]−N−κ log
(

1 + K2

η2

)
− t+

∫
logKη dE[µ̂Φ(Xcut)]

>
∫

log|·|dµN − ε(N), (2.2.6)

where ε(N) = ε1(N) + ε2(N) +N−κ log
(
1 + K2

η2

)
+ t and we have used

∫
logKη (λ)µN (dλ) >

∫
log(min(|λ|,K))µN (dλ) =

∫
log|λ|µN (dλ) (2.2.7)

for N large enough in the last inequality (2.2.6), as the µN ’s are supported on a common compact

set and K grows with N . It remains to check that ε(N) → 0. This follows immediately from

our parameter choices (2.2.1), except possibly for the term ε2(N). For this term, we note that

P(Ess) → 1 and P(Egap) → 1 by assumption ((2.1.7) and (2.1.5), respectively), then use Lemmas

2.2.3 and 2.2.6 to show that P(Econc) → 1 and P(Eb) → 1. This shows that ε2(N) → 0, which

concludes the proof of the lower bound and thus of (2.1.8).

2.2.2 Proof of Theorem 2.1.2. In this subsection we prove Theorem 2.1.2. The proof is largely

similar to that of Theorem 2.1.1, so we will omit some steps.

We make the same parameter choices as in (2.2.1). We also work with the events Egap and Eb

from (2.2.2), but Ess is no longer relevant, and Econc is replaced by

ELip =
{∣∣∣∣∫ logη(λ)(µ̂HN − E[µ̂HN ])(dλ)

∣∣∣∣ 6 t}.
Proof of upper bound of Theorem 2.1.2. From (2.1.10) and some elementary estimates, there exists
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a universal constant cε0 such that, for N large enough, we have

E[eN
∫

logη(λ)(µ̂HN−E[µ̂HN ])(dλ)] 6 cε0 exp

(2N ζ

cζ

)1/ε0( 1
2η

)2
.

Hence

1
N

logE[|det(HN )|] 6 1
N

logE[eN
∫

logη(λ)µ̂HN (dλ)] 6
(

2
4ε0cζ

)1/ε0
N ζ/ε0−1

η2 +
∫

logη(λ)E[µ̂HN ](dλ)

6

(
2

4ε0cζ

)1/ε0
N ζ/ε0−1

η2 + 1
2ηW1(E[µ̂HN ], µN ) +

∫
logη(λ)µN (dλ).

For ζ small enough, the first term decays with N . We complete the proof by applying (2.1.9) and

(2.2.5).

Proof of lower bound of Theorem (2.1.2). Arguing as in (2.2.6), N−1 logE[|det(HN )|] is larger than

1
N

logE[eN(
∫

(log|·|−logη)dµ̂HN+
∫

logη d(µ̂HN−E[µ̂HN ]))1ELip1Egap ] +
∫

logη dE[µ̂HN ]

>
1
N

logE
[
eN
∫

(log|·|−logη)µ̂HN 1ELip1Egap

]
− t− 1

2ηW1(E[µ̂HN ], µN ) +
∫

log|·|µN .

As in Lemma 2.2.5, we have

1
N

logE
[
eN
∫

(log|λ|−logη(λ))µ̂HN (dλ)1ELip1Egap1Eb

]
> −pb2 log(1 + e2Nε

η2)− η2

2w2
b

− 1
N

logP(ELip, Egap, Eb),

so by our parameter choices (2.2.1) it suffices to show P(ELip, Egap, Eb) → 1. The event Egap is

handled by assumption (2.1.5); the event Eb is handled by Lemma 2.2.6 (replacing dBL there

with W1 here); and the event ELip is handled by assumption (L), since (2.1.10) gives P(EcLip) 6

exp
(
− cζ
Nζ min{(2Ntη)2, (2Ntη)1+ε0}

)
.
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2.3 Applications to matrix models

In this section, we check the assumptions of our general theorems, 2.1.1 and 2.1.2, for our different

matrix models. First we present two general and classical techniques that will help us check

these assumptions. Informally speaking, the first technique shows how local laws for the Stieltjes

transform along lines of the form {E + iN−ε : E ∈ [−C,C]} give polynomial convergence rates of

the averaged empirical spectral measure, corresponding to assumptions (E) and (W). The second

technique proves Wegner estimates of the form (2.1.5) using the Schur complement formula.

In the last Section 2.3.10, we prove the claims made just after Theorem 2.1.1 about the necessity

of its assumptions.

2.3.1 General technique: Convergence rates via local laws. In this subsection, we sum-

marize the general technique for using local laws to derive estimates like (2.1.3) and (2.1.9). We

will use this technique repeatedly for specific matrix models. This idea is classical; see for instance

[19] for the specific estimates we need.

Write sN (z) =
∫

dµ̂N (λ)/(λ − z) the Stieltjes transform of µ̂HN , and mN (z) =
∫

dµN (λ)/(λ −

z) the Stieltjes transform of µN . Define the distribution functions FEµ̂(x) = E[µ̂HN ]((−∞, x]),

FµN (x) = µN ((−∞, x]).

Proposition 2.3.1. Suppose the measures µN have densities µN (·) on all of R, not just near the

origin, and supN ‖µN (·)‖L∞ < ∞. Assume also that there exist fixed (N -independent) constants

A, ε1, ε2 > 0 such that

∫ 3A

−3A

∣∣E[sN (E + iN−ε1)]−mN (E + iN−ε1)
∣∣ 6 N−ε2 , (2.3.1)∫

|x|>A

∣∣∣FE[µ̂](x)− FµN (x)
∣∣∣ dx 6 N−ε1−ε2 . (2.3.2)

Then there exists γ > 0 with dKS(E[µ̂HN ], µN ) = O(N−γ). If in addition supp(µN ) ⊂ (−A,A) for
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each N , and ∣∣∣FE[µ̂](x)− FµN (x)
∣∣∣ = o|x|→∞

( 1
|x|

)
, (2.3.3)

then there exists γ′ > 0 with dBL(E[µ̂HN ], µN ) 6W1(E[µ̂HN ], µN ) = O(N−γ′).

Proof. From [19, Theorem 2.2], we have

dKS(E[µ̂HN ], µN ) 6 η−1 sup
x

∫
|y|610η

|FµN (x+ y)− FµN (x)|dy

+ 2π
η

∫
|x|>A

∣∣∣FE[µ̂](x)− FµN (x)
∣∣∣ dx+

∫ 3A

−3A
|E[sN (E + iη)]−mN (E + iη)|dE.

Since the measures µN have densities bounded by S, say, the function FµN is S-Lipschitz; hence

the first term is at most 100Sη. With the choice η = N−ε1 , the second and third terms are handled

by assumption.

For the Wasserstein distance, let f be a test function with ‖f‖Lip 6 1. We integrate by parts

(notice (2.3.3) gives us the decay at infinity necessary to do this) to find

∣∣∣∣∫ ∞
2A

f(x)(E[µ̂HN ]− µN )(dx)
∣∣∣∣ =

∣∣∣∣∫ ∞
2A

f(x)E[µ̂HN ](dx)
∣∣∣∣ 6 ∫ ∞

2A
(x− (2A− 1))E[µ̂HN ](dx)

6 dKS(E[µ̂HN ], µN ) +
∫ ∞

2A

∣∣∣FE[µ̂](x)− FµN (x)
∣∣∣ dx 6 N−γ +N−ε1−ε2

and similarly for the left tail. For the bulk, we approximate f on [−2A, 2A] with test functions

smooth enough to integrate by parts on f directly, which gives

∣∣∣∣∣
∫ 2A

−2A
f(x)(E[µ̂HN ]− µN )(dx)

∣∣∣∣∣ 6 (8A+ 4)dKS(E[µ̂HN ], µN ).

This completes the proof.

2.3.2 General technique: Wegner estimates via Schur complements. In this subsection,

we summarize the classical idea of using the Schur-complement formula to derive Wegner estimates

on the probability that there are no eigenvalues in a small gap around energy level E. These will
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be used to check (2.1.5) for a wide variety of models.

For compactness, we temporarily drop the N -dependence from the notation HN . For any j in

J1, NK, write H(j) for the matrix obtained by erasing the jth column and row from H, write hj for

the (N − 1)-vector consisting of the jth column of H with the entry Hjj removed, and write H
ĵj

for the collection of every entry of H except for Hjj .

Proposition 2.3.2. Fix E ∈ R and suppose there exists a sequence η = ηN tending to zero such

that

sup
j∈J1,NK

E
[
E
[

Im
(

1
Hjj − (E + iη + hTj (H(j) − (E + iη))−1hj)

)∣∣∣∣∣Hĵj

]]
= o

( 1
Nη

)
. (2.3.4)

Then

lim
N→∞

P(HN has no eigenvalues in [E − η,E + η]) = 1.

Proof. We have

P(HN has an eigenvalue in [E − η,E + η]) 6 E[#{j : |λj − E| 6 η}] 6 E

2
N∑
j=1

η2

η2 + (λj − E)2


= 2ηE

Im

 N∑
j=1

1
λj − E − iη

 = 2ηE
[
Im
(

Tr 1
H − (E + iη)

)]

6 2Nη sup
j∈J1,NK

E[Im(((H − (E + iη))−1)jj)].

Moreover, the Schur complement formula gives

((H − (E + iη))−1)jj = 1
Hjj − (E + iη + hTj (H(j) − (E + iη))−1hj)

,

which concludes the proof by the assumption (2.3.4).

Lemma 2.3.3. Write H̃jj for the law of Hjj conditioned on H
ĵj
. Suppose that there exists a single

probability measure µ on R (independent of N and j) with a bounded density µ(·), and constants
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σ̃jj = σ̃
(N)
jj and m̃jj = m̃

(N)
jj such that

H̃jj − m̃jj

σ̃jj
∼ µ

for every N and j ∈ J1, NK. If there exist α,C > 0 with

inf
j∈J1,NK

σ̃jj >
1
C
N−α,

then (2.3.4) holds with η = o(N−1−α) for every E ∈ R.

Proof. For any deterministic z = E + iη, and with the notation S := ‖µ(·)‖L∞ , we have

E
H̃jj

[
Im
(

1
H̃jj − z

)]
=
∫
R

η

(σ̃jjx+ m̃jj − E)2 + η2µ(x) dx 6 S 1
σ̃jj

∫
R

η

x2 + η2 dx 6 πSCNα.

Define zj = E+iη+hTj (H(j)−(E+iη))−1hj , and z̃j = zj−E[H̃jj ], and notice that z̃j is measurable

with respect to H
ĵj

with Im(z̃j) > η deterministically; thus

sup
j∈J1,NK

E
[
E
[

Im
(

1
Hjj − zj

)∣∣∣∣∣Hĵj

]]
= sup

j∈J1,NK
Ez̃j

[
E
H̃jj

[
Im
(

1
H̃jj − z̃j

)]]
6 πSCNα

which is o(1/(Nη)) for our choice of η.

2.3.3 Wigner matrices. We will use Theorem 2.1.1 (convexity-preserving functional) and

model a Wigner matrix WN − E as WN − E = Φ(X1, . . . , XM ), where M = N(N+1)
2 , the Xi’s

are independent random variables distributed according to µ, and Φ is 1√
N

times the identity map

which places these entries in the upper triangle of an N ×N matrix, minus E Id. This Φ is trivially

convex and satisfies ‖Φ‖Lip = 1√
N
.

Now we check Assumption (E) on expectations, with all µN ’s equal to the semicircle law ρsc.

A. Tikhomirov [147, Theorem 1.1] showed that for every ε in the assumption of 2 + ε moments,
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there exists η = η(ε) > 0 with

dKS(E[µ̂WN
], ρsc) 6 N−η. (2.3.5)

Now we transfer this inequality from dKS to dBL: If M > 2 and ‖f‖∞ 6 1, then

∣∣∣∣∣
∫ −M
−∞

f(x)(E[µ̂WN
]− ρsc)(dx)

∣∣∣∣∣ =
∣∣∣∣∣
∫ −M
−∞

f(x)E[µ̂WN
](dx)

∣∣∣∣∣ 6
∫ −M
−∞

E[µ̂WN
](dx) 6 N−η

from (2.3.5), and similarly for
∫∞
M ; on [−M,M ] we proceed exactly as in the proof of Proposition

2.3.1, to obtain (E)1.

Now we check the three estimates comprising assumption (C) on coarse bounds.

(2.1.4) Fix ε > 0 and write W = WN = A + B = AN + BN , where A is defined entrywise by

Aij = (Wij)1|Wij |6 1
10N e

Nε . Notice that all eigenvalues of A have absolute value at most 1
10e

Nε .

The Weyl inequalities give us

λi(W ) = λi(A+B) 6 λmax(A) + λi(B) 6 1
10e

Nε + λi(B)

and similarly λi(W ) > λi(B) − 1
10e

Nε , so that for fixed E, for large enough N we have, for

any i,

1 + |λi(W − E)|1|λi(W−E)|>eNε 6 1 + 2|λi(W )|1|λi(W )|> 1
2 e
Nε 6 1 + 2|λi(W )|1|λi(B)|> 1

4 e
Nε

6 1 + (|λmax(A)|+ |λi(B)|)1|λi(B)|> 1
4 e
Nε 6 1 + 2|λi(B)|1|λi(B)|> 1

4 e
Nε .

For x > 1 we have (1 + 2x) < (1 + 100x2)1/2, so

N∏
i=1

(1 + 2|λi(B)|1|λi(B)|> 1
4 e
Nε ) 6

N∏
i=1

(1 + 100λi(B)2)1/2 = det(Id +100B2)1/2.

1We also briefly sketch another possible proof of Assumption (E). First, by following the usual Hoffman-Wielandt-
based proof that two moments suffice for the Wigner semicircle law (see, e.g., [7, Theorem 2.1.21]), we can assume
that the entries Wij are replaced with Wij1|Wij |6N10ε , if the 2 + ε moment is finite. Second, for this new matrix,
one can apply the usual Stieltjes-transform-based proof of the Wigner semicircle law using Schur complements (see,
e.g., [7, Section 2.4.2]); the fourth moments of the new matrix are O(N40ε), which is more than compensated by 1/N
prefactors in the error terms.
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By Fischer’s inequality this can be bounded above by the product of its diagonal entries; that

is,

det(Id +100B2)1/2 6
N∏
i=1

1 + 100
N∑
j=1

B2
ij

1/2

6
N∏
i=1

1 + 10
N∑
j=1
|Bij |

,
where for the last inequality we used

∑
a2
i 6 (

∑
ai)2 for positive numbers ai. Now, for some

constant C we have E[|Bij |],E[|Bij |2] 6 CNe−N
ε
6 e−

1
2N

ε
, and notice that we can calculate

E
[∏N

i=1

(
1 + 10

∑N
j=1|Bij |

)]
by expansion and factorization again. All matrix elements appear

with a power at most two, and for any set I of couples (i, j) which can appear in the expansion,

we have E[
∏
α∈I |Bα|] 6 (e−

1
2N

ε)|I| so that

1
N

logE

 N∏
i=1

1 + 10
N∑
j=1
|Bij |

 6 1
N

log
N∏
i=1

1 + 10
N∑
j=1

e−
1
2N

ε

→ 0.

(2.1.5) The existence of gaps near zero with high probability (indeed, gaps of polynomial size) was

established by Nguyen [125, Theorem 1.4], including the case of general energy levels E.

(2.1.6) Fix δ so small that µ has finite 2 + 2δ moment. Let SN be the symmetric group on N letters,

and for any permutation σ ∈ SN define Xσ =
∣∣∣(W − E)1,σ(1) · . . . · (W − E)N,σ(N)

∣∣∣. Then

|det(WN − E)| 6
∑
σXσ, and by convexity of x 7→ x1+δ we have

|det(WN − E)|1+δ 6

 ∑
σ∈SN

Xσ

1+δ

6 (N !)1+δ
∑
σX

1+δ
σ

N ! .

If
√
NY is distributed according to µ, then for each E ∈ R there exists cE = cE(µ, δ) such

that

max(E[|Y − E|1+δ],E[|Y − E|2+2δ],E[|Y |1+δ],E[|Y |2+2δ]) 6 cE <∞.

Thus supσ E[X1+δ
σ ] 6 (cE)N . Since N ! 6 NN , this gives E[|detWN |1+ε] 6 cNEN

(1+δ)N up to

factors of lower order, which suffices.

To prove assumption (S) on spectral stability, we follow Bordenave, Caputo and Chafaï, see [55,
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Lemma C.2] and [54, Lemma 2.2]. WriteW cut
N = Φ(Xcut) for the matrixWN with entries truncated

at level N−κ, and we will prove (S) for fixed, small enough κ with respect to ε. From interlacing

(see, e.g., [18, Theorem A.43]) that

dKS(µ̂WN
, µ̂W cut

N
) 6 1

N
rank(WN −W cut

N ) 6 2
N

∑
i6j

1|Wij |>N−κ ,

where the last inequality follows since the rank of a matrix is at most the number of its nonzero

entries. The N(N+1)
2 random variables (1|Wij |>N−κ)16i6j6N are i.i.d. Bernoulli variables with

parameter

pN = P(|Wij | > N−κ) 6 cN (− 1
2 +κ)(2+ε) 6 cN−1− ε4 ,

if we choose κ small enough, with c =
∫
|x|2+εµ(dx). Writing h(x) = (x+1) log(x+1)−x, Bennett’s

inequality [47] gives

P

∑
i6j

1|Wij |>N−κ −
N(N + 1)

2 pN > t

 6 exp
(
−σ2h

(
t

σ2

))

with

σ2 = N(N + 1)
2 pN (1− pN ) 6 N(N + 1)

2 pN 6 N
1−ε/8

for N large enough. With the choice t = N1−κ− N(N+1)
2 pN > 1

2N
1−κ (for κ small enough) we have

t
σ2 → +∞, and using h(x) ∼ x log x as x→ +∞ we obtain

logP(dKS(µ̂WN
, µ̂W cut

N
) > N−κ) 6 −σ2h

(
N1−κ

2σ2

)
6 −CN1−κ log

(
N1−κ

2σ2

)

for some constant C and N large enough, which completes the proof of (2.1.7).

Finally, we prove the remark just before Corollary 2.1.3, namely that E[|det(WN )|] = +∞ when

E(|W12|2) = +∞. Indeed, we can write E[|det(WN )|] = E(|XW 2
12 + YW12 +Z|) where the random

vector (X,Y, Z) is independent of W12 and X = det((Wij)36i,i6N ). We have P(X = 0) < 1 so that

there exist compact intervals I, J,K in some [−A,A] with a := infx∈I |x| > 0 and P((X,Y, Z) ∈
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I×J×K) > 0. For any such (X,Y, Z) ∈ I×J×K we have |XW 2
12+YW12+Z| > aW 2

12−AW12−A,

so that

E(|XW 2
12 + YW12 + Z|) > E(|XW 2

12 + YW12 + Z|1(X,Y,Z)∈I×J×K)

> E((aW 2
12 −AW12 −A)1(X,Y,Z)∈I×J×K)

= E(aW 2
12 −AW12 −A)P((X,Y, Z) ∈ I × J ×K) = +∞.

2.3.4 Erdős-Rényi matrices.We will use Theorem 2.1.1 (convexity-preserving functional) and

model an Erdős-Rényi matrix HN −E as HN −E = Φ(X1, . . . , XM ), where M = N(N+1)
2 , the Xi’s

are independent Bernoulli random variables with parameter pN , and Φ is 1√
NpN (1−pN )

times the

identity map which places these entries in the upper triangle of an N ×N matrix, minus E Id. This

clearly satisfies assumptions (I) and (M) with ‖Φ‖Lip = 1√
NpN (1−pN )

.

Now we verify assumption (E) with all µN ’s equal to the semicircle law ρsc. In the proof, we

control the extreme eigenvalues (more precisely the smallest and second-largest) with results of Vu

[154], improving on earlier results of Füredi-Komlós [83]; and we control the bulk eigenvalues using

the local law of Erdős et al. [74]. Often we use much weaker consequences of the results, replacing

logN factors by polynomial factors and so on.

More precisely, consider H̃N = HN − E[HN ]. This matrix has centered entries of variance

σ2 = 1
N , supported in [−K,K] with K = 1√

εNε
. Thus the proof of [154, Theorem 1.3, Theorem

1.4] shows that there exist C, γ > 0 with

P
(
‖H̃N‖ > 2 + C

logN
(εN ε)1/4

)
6 N−γ (2.3.6)

for N large enough. Recall we order eigenvalues as λ1 6 · · · 6 λN ; since E[HN ] is rank-one and

positive semidefinite, interlacing tells us that max(|λ1(HN )|, |λN−1(HN )|) 6 ‖H̃N‖, and thus we
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have the very coarse bound

P(max(|λ1(HN )|, |λN−1(HN )|) > 3) 6 N−γ

for N large enough. In particular, whenever f is a test function with ‖f‖∞ 6 1, we have

∣∣∣∣∫ ∞
3

f(x)(E[µ̂HN ]− ρsc)(dx)
∣∣∣∣ 6 1

N

N∑
i=1

P(λi(HN ) > 3) 6 1
N

+N−γ ,

and similarly for the left tail, which is even easier because we do not need to separate out the

smallest eigenvalue.

Now we handle the bulk eigenvalues. Let Fρsc , Fµ̂, and FE[µ̂] be the distribution functions for

ρsc, µ̂HN , and E[µ̂HN ], respectively. Then [74, Theorem 2.12] shows that there exists ν > 0 such

that, for N large enough,

P
(

sup
x∈[−3,3]

∣∣∣Fρsc(x)− Fµ̂(x)

∣∣∣ 6 N−1+ε
)
> 1− exp(−ν(logN)5 log logN ).

Since supx|Fρsc(x)− Fµ̂(x)| 6 2 deterministically, this gives

sup
x∈[−3,3]

∣∣∣Fρsc(x)− FE[µ̂](x)
∣∣∣ 6 N ε

N
+ 2 exp(−ν(logN)5 log logN ).

The proof of (E) is then easily completed as in the case of Wigner matrices.

Now we check the three estimates comprising assumption (C) on coarse bounds.

(2.1.4) We have

‖HN‖2 6
∑
i,j

|Hij |2 6
N

pN (1− pN ) 6
1
ε
N2−ε (2.3.7)

almost surely, so (2.1.4) is trivially satisfied.
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(2.1.5) For bulk energy levels, meaning E ∈ (−2, 2), one can show

P
(
HN has no eigenvalues in

(
E − 1

N2 , E + 1
N2

))
= 1− o(1)

using the bulk fixed-energy universality results of Landon-Sosoe-Yau [113, Section 1.1.1]; the

argument is given in our discussion below of the free-addition model. For |E| > 2, eigenvalues

other than λN are handled with the result of Vu above (2.3.6). For λN (only a concern for

positive E values), the Weyl inequalities give

λN (HN ) > λN (E[HN ]) + λ1(HN − E[HN ]) =
√

NpN
1− pN

+ λ1(HN − E[HN ])

>
1√
ε
N ε/2 + λ1(HN − E[HN ]).

By (2.3.6), the last term is at least −3 with probability 1− o(1); thus λN cannot stick to any

fixed E > 2.

(2.1.6) This follows from (2.3.7), using |det(HN − E)| 6 ‖HN − E‖N .

For assumption (S) on spectral stability, we note that the threshold for cutting is

N−κ

‖Φ‖Lip
= N

1
2−κ

√
pN (1− pN ) >

√
εN

ε
2−κ > 1

for κ < ε
2 and large enough N . Since the Xi = 0 or 1, this means that X = Xcut, and hence (2.1.7)

is trivially satisfied.

2.3.5 Band matrices.We will use Theorem 2.1.1 (convexity-preserving functional) and model a

band matrix HN as HN = Φ(X1, . . . , XM ), whereM = (W+1)N , the Xi’s are independent random

variable distributed according to µ, and Φ is 1√
2W+1 times the identity map which arranges these

entries into a band matrix. This Φ is trivially convex and satisfies ‖Φ‖Lip = 1√
2W+1 . Throughout

this section, the constant ε will be the same as in the assumption W > N ε.
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To check Assumption (E) with µN ≡ ρsc, we will use Proposition 2.3.1 with A = 3. (By

translation invariance, it suffices to check (E) at E = 0.) The bulk estimate (2.3.1) follows from

the stronger local law of Erdős et al. [77]; the tail estimate (2.3.2) uses the tail estimates of

Benaych-Georges/Péché [46].

Write sN (z) for the Stieltjes transform of µ̂HN and msc(z) for the Stieltjes transform of the

semicircle law. The local law [77, Theorem 2.1] gives constants C and c such that, if z = E + iη

with E 6 3, κ := ||E| − 2| > N−δ for δ = 3ε/20, and η = N6δ−ε, then

P(|sN (z)−msc(z)| > N−δ) 6 CN−c(log logN).

Together with the trivial bound |E[sN (E + iη)]−msc(E + iη)| 6 2
η , this gives

|E[sN (z)]−msc(z)| 6 N−δ + 2CN ε−6δ−c(log logN) . N−δ

for such z values. Writing ε1 = ε − 6δ > 0 and using again the trivial bound for κ < N−δ, we

obtain ∫ 3

−3

∣∣E[sN (E + iN−ε1)]−msc(E + iN−ε1)
∣∣ . 6N−δ + 8N ε1−δ.

By our choice of δ we have ε1 − δ < 0; this suffices to check (2.3.1).

For the tail estimate (2.3.2), we note that
∣∣∣FE[µ̂](x)− Fρsc(x)

∣∣∣ 6 P(‖HN‖ > x) for, say, x > 3.

The proof of [46, Theorem 1.4] gives, for any k > 1,

P(‖HN‖ > x) 6 Nx−2k4k
(

1− (12α/e)6k12

W

)−1

.

Choosing k = kN = N ε/20, we verify (2.3.3) and find, for N large enough,

∫ ∞
3

P(‖HN‖ > x) dx 6 6N1− ε
20

(4
9

)Nε/20

,

which is much faster than we need. The left tail is estimated similarly, and this verifies (2.3.2) and
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thus (2.1.3).

Now we check assumption (C) on coarse bounds.

(2.1.4) The proof for Wigner matrices with 2 + ε moments works verbatim here.

(2.1.5) Since we assumed our entries have a bounded density, this follows from Proposition 2.3.2 and

Lemma 2.3.3.

(2.1.6) The proof for Wigner matrices with 2 + ε moments works verbatim here.

The proof of Assumption (S) is similar to the case of Wigner matrices; in particular it holds

assuming only that µ has 2 + ε finite moments.

2.3.6 Sample covariance matrices. As noted above, this model is not covered by either of

our theorems directly. But it can be proved by mimicking the proof of Theorem 2.1.1 (convexity-

preserving functional) with the following changes. We letM = pN , let X1, . . . , XM be independent

copies of µ, and consider the map Φ = ΦE : RM → Sp that places its arguments in the entries

of the p × N matrix Y = Yp,N and returns 1
N Y Y

T − E. There are two problems with applying

Theorem 2.1.1 as written, but we will implement the following workarounds:

1. Φ is not convex (but we will use the standard Hermitization trick that compares eigenvalues

of Y Y T with eigenvalues of the (p + N) × (p + N) block matrix ( 0 Y
Y T 0 ), which is a convex

function of the entries of Y ).

2. Φ is not Lipschitz, since it grows too quickly at infinity (but the Hermitization is Lipschitz).

Below, we will verify assumption (E) with some value of κ. For now, we redefine Xcut (for this

model only), using this same κ, as

(Xcut)i = Xi1|Xi|6N−κ+ 1
2
. (2.3.8)
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We choose this scaling so that Φ(Xcut)+E has entries at most N−2κ, similar to what happens in the

Wigner and Erdős-Rényi cases. Later we will check assumption (S) with this new definition, as well

as assumption (C). First we show that all of these assumptions yield determinant concentration.

Much of the proof of Theorem 2.1.1 works verbatim in this new setting, since for example it

never uses the old definition of Xcut directly, using instead the stability estimate (2.1.7) which will

still be true for us under the new definition. The biggest change is in the proof of Lemma 2.2.3,

where we applied results of Talagrand using the convexity and Lipschitz properties which no longer

hold. The replacement for Lemma 2.2.3 is as follows.

Lemma 2.3.4. Let t̃0(N) = 4
√

2π·37/4
√
ηN

1
2 +κ . If t > t̃0(N), then

P((Econc)c) 6 12 exp
(
−(t− t̃0(N))2ηN1+2κ

171
√

3

)
.

Proof. By translation-invariance, it suffices to check this at E = 0. We use the classical trick of

considering the (p+N)× (p+N) matrix

HN = HN (X) = 1√
N

0p×p Yp,N

Y T
p,N 0N×N

.
For any test function f , we have

tr(f(H2
N )) = 2 tr(f(Y Y T /N)) + (N − p)f(0). (2.3.9)

Thus we need to consider Lipschitz, convex decompositions of the function x 7→ logKη (x2), which
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we do as follows:

l̃og1(x) =



−33/4

2√ηx−
3
2 + logη(η

√
3) if x 6 −31/4√η,

logη(x2) if − 31/4√η 6 x 6 31/4√η,

33/4

2√ηx−
3
2 + logη(η

√
3) if x > 31/4√η,

l̃og2(x) =


33/4

2√ηx if x 6 31/4√η,

logKη (x2) + 3
2 − logη(η

√
3) if x > 31/4√η,

l̃og3(x) =


−33/4

2√ηx if x > −31/4√η,

logKη (x2) + 3
2 − logη(η

√
3) if x 6 −31/4√η.

Notice that logKη (x2) =
∑3
i=1 l̃ogi(x), that l̃og1 is convex while l̃og2 and l̃og3 are concave, and that

each l̃ogi is 33/4

2√η -Lipschitz. Then we consider the functions f̃i : [−N−κ+1/2, N−κ+1/2]M → R given

by

f̃i(X) = (−1)1i6=1
1
N

tr(l̃ogi(HN (X))).

Using (2.3.9) and mimicking the proof of Lemma 2.2.3, we find

P(Ecconc) = P
(∣∣∣∣ 1

2N tr(logKη (H2
N ))− 1

2N E[tr(logKη (H2
N ))]

∣∣∣∣ > t

)
6

N∑
i=1

P
(∣∣∣f̃i(X)− E[f̃i(X)]

∣∣∣ > 2
3 t
)
.

As in the original proof, each f̃i is
√

2N 1
N

33/4

2√η
1√
N

= 33/4

N
√

2η -Lipschitz, and since the map X 7→ HN

is convex (this is the point of the Hermitization) we know that each f̃i is convex as well. Then

Talagrand’s inequality gives

P
(∣∣∣f̃i −Mfi

∣∣∣ > t) 6 4 exp
(
− t

2ηN1+2κ

96
√

3

)

and we conclude as before.
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It remains to check assumptions (E), (C), and (S) (the latter under the new definition (2.3.8)).

The only assumption that is not translation-invariant (i.e., that depends on the energy level E) is

assumption (C).

For assumption (E), [148] proved that if µ has 2+γ moments then there exists (explicit) κ(γ) > 0

such that

dKS(E[µ̂ 1
N
Y Y T ], µMP, pN

N
) . N−κ(γ).

From this Kolmogorov-Smirnov distance information we evaluate dBL in the same way as for Wigner

matrices with 2 + γ moments. It remains only to understand dBL(µMP,
pN
N
, µMP,γ), and this is only

necessary in the case γ < 1 (since when γ = 1 we assumed pN = N). If γ1, γ2 ∈ [ε, 1− ε], then the

difference between the densities gives

dBL(µMP,γ1 , µMP,γ2) = Oε

(√
|γ1 − γ2|

)
.

Since we assumed in (2.1.13) that
∣∣pN
N − γ

∣∣ is polynomially small, this suffices to prove (2.1.3).

We check the three estimates of assumption (C) as follows:

(2.1.4) This follows the proof of the Wigner case, but using the Weyl inequalities for singular values

instead of those for eigenvalues. We write out the beginning of the argument because some

of the powers change. For some ε > 0, write Y/
√
N = A + B, where A is defined entrywise

by

Aij = 1√
N
Yij1 1√

N
|Yij |6 1

10N e
1
2N

ε .

Then A has singular values at most 1
10e

1
2N

ε , and the Weyl inequalities give

σi(Y/
√
N) 6 σmax(A) + σi(B) 6 1

10e
1
2N

ε + σi(B)
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and similarly σi(Y/
√
N) > σi(B)− 1

10e
1
2N

ε , so that for each i we have

1 +
∣∣∣λi(Y Y T /N − E)

∣∣∣1|λi(Y Y T /N−E)|>eNε 6 1 + 2λi(Y Y T /N)1λi(Y Y T /N)> 1
2 e
Nε

= 1 + 2σ2
i (Y/

√
N)1

σi(Y/
√
N)> 1√

2
e

1
2N

ε

6 1 + 8σ2
i (B)1

σi(B)> 1
2 e

1
2N

ε .

Then from Fischer’s inequality we have

p∏
i=1

(1 + 8σ2
i (B)1

σi(B)> 1
2 e

1
2N

ε ) 6 det(Id +8BBT ) 6
p∏
i=1

1 + 8
N∑
j=1

B2
ij

.
Since B is non-Hermitian with independent entries, the same argument as in the Wigner case

goes through here: when we expand and factor, each matrix entry appears at a power at most

two.

(2.1.5) We mimic the proofs from Section 2.3.2, making the following changes. We closely follow

the proof of some Wegner estimates for complex Wigner matrices from [76, Theorem 3.4],

as adapted in [58, Proposition B.1] to the symmetric case. Our estimates below will be

coarser as we can afford any polynomial error, contrary to the optimal estimates from these

references. Let E, η > 0, η = ε/N , I = [E − η,E + η], z = E + iη and NI = |{µi ∈ I}|. In

the covariance matrix setting, the Schur complement formula gives, for any 1 6 j 6 N and

defining X = Y/
√
N and H = Y Y ∗/N (see e.g. [53, Equation (3.8)])

((H − z)−1)ii =
(
− z − zX∗i Ri(z)Xi

)−1

where we define Xi = (Xij)j , X(i)
jk = Xjk1j 6=i and Ri(z) = ((X(i))∗X(i) − z)−1. This implies,
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by the Cauchy-Schwarz inequality,

E[N 2
I 1A] 6 C(Nη)2E

[(
Im 1
−z − z

N

∑N
α=1

ξα
λα−z

)2
1A

]

6 Cε2E
[(

(
N∑
α=1

cαξα)2 + (E −
N∑
α=1

dαξα)2)−1
1A

]

for any event A, where

dα = − 1
N
− Nλα(E − λα)
N2(λα − E)2 + ε2 , cα = λαε

N2(λα − E)2 + ε2 ,

with (λα)16α6N−1 the eigenvalues of (X(1))∗X(1), with corresponding L2-normalized eigen-

vectors uα’s, and ξα = |uα · Y1|2.

Let (γk)16k6N be implicitly defined through
∫ γk
0 µMP,γ(dx) = k/N , with µMP,γ from (2.1.14).

If E < γbN/2c, we define m = b3N/4c. If E > γbN/2c, let m = bN/4c. Convergence of

N−1∑N
k=1 δµk (µ1, . . . , µN are the eigenvalues of H) to µMP,γ under the minimal assumption

of finite second moment of the entries [155] has the following elementary consequence: For

any c > 0, P(AN ) = 1 − o(1) where AN = ∩N/7<k<8N/7{|µk − γk| < c}. By interlacing,

on AN the (dm+`)06`63 all have the same sign and absolute value greater than N−2, and

cm, cm+1 > cε/N2. Hence we can apply [58, Equation (B.4)]2 with τ = 0, r = p = 2 (and

either E or −E depending on the sign of the dm+`’s) to obtain, on AN ,

EY1

[(
(
N∑
α=1

cαξα)2 + (E −
N−1∑
α=1

dαξα)2)−1
]
6

C
√
cmcm+1 min(dm+1, dm+2, dm+3) 6 C

N10

ε
,

so that E[N 2
I 1AN ] 6 N10ε and in particular P(NI > 1)→ 0 for ε = e−N

ε .

(2.1.6) This proof has the same idea as the one for Wigner matrices; the only difference is that the

product of entries associated to one permutation is estimated as follows. Fix δ so small that
2The assumption (2.1.12) is exactly the needed input for [58, Lemma B.4]. Note that although this Lemma

assumes µ has finite moments of all orders, this is actually not used in its proof.
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µ has finite 2 + 2δ moment. For any permutation σ ∈ Sp define

Xσ =
∣∣∣(Y Y T /N − E)1,σ(1) · . . . · (Y Y T /N − E)p,σ(p)

∣∣∣.
Let

cδ = max(E[|Y1,1|1+δ],E[|Y1,1|2+2δ]) <∞.

Then from convexity of x 7→ x1+δ we have

 1
Np

N∑
j1,...,jp=1

p∏
i=1

∣∣∣Yi,jiYσ(i),ji − Eδi,σ(i)

∣∣∣
1+δ

6
1
Np

N∑
j1,...,jp=1

( p∏
i=1

∣∣∣Yi,jiYσ(i),ji − Eδi,σ(i)

∣∣∣)1+δ

,

and thus

E[X1+δ
σ ] = E


 p∏
i=1

∣∣∣∣∣∣ 1
N

N∑
j=1

(Yi,jYσ(i),j − Eδi,σ(i))

∣∣∣∣∣∣
1+δ


6

1
Np

N∑
j1,...,jp=1

E

( p∏
i=1

(
∣∣∣Yi,jiYσ(i),ji

∣∣∣+ |E|))1+δ


=: 1
Np

N∑
j1,...,jp=1

E[(Zj1,...,jp)1+δ].

Now each Zj1,...,jp is the sum of 2p terms, each of the form |E|p−k
∏k
`=1 |Yi`,ji`Yσ(i`),ji`

| for

some k ∈ J1, pK and some collection of distinct integers i1, . . . , ik ∈ J1, pK. Since they are

distinct, each entry of the matrix Y appears with power at most two in such a term; since

these entries are independent, we have

E

(|E|p−k k∏
`=1
|Yi`,ji`Yσ(i`),ji`

|
)1+δ 6 |E|(p−k)(1+δ)c2k

δ 6 max(|E|, cδ, 1)2p(1+δ) =: c2p(1+δ)
δ,E
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Then Minkowski’s inequality in L1+δ gives

E[X1+δ
σ ] 6 sup

j1,...,jp
E[(Zj1,...,jp)1+δ] 6 (2c2

δ,E)p(1+δ).

The rest of the proof is similar to the Wigner case.

Finally we check assumption (S) with the new definition (2.3.8). Write Ycut = Φ(Xcut) for the

p×N matrix Y with entries truncated at level N−κ+1/2; then it is classical that

dKS(µ̂Y Y T /N , µ̂YcutY Tcut/N
) 6 1

p
rank(Y − Ycut)

(this follows from interlacing of singular values; see, e.g., [18, Theorem A.44]). The rest of the

argument with Bennett’s inequality goes through from here; note that P(|Wij | > N−κ) and

P (|Yij | > N−κ+1/2) are of similar order because Y has order-one entries but the Wigner matrix W

has order- 1√
N

entries.

2.3.7 Gaussian matrices with a (co)variance profile. We will use Theorem 2.1.2 (concen-

trated input) to prove Corollary 2.1.8.B. First we need the following sequence of lemmas estab-

lishing consequences of our model assumptions (such as the log-Sobolev inequality and tail decay

estimates).

Lemma 2.3.5. Let C = CN be the covariance matrix of the upper triangle of HN considered as a

Gaussian vector, i.e., C is an N(N+1)
2 × N(N+1)

2 matrix with entries

C(i,j),(k,`) = Cov(Hij , Hk`) = Cov(Wij ,Wk`).

Let p be as in the weak-fullness assumption (wF). Then, in the sense of quadratic forms,

C > N−1−p Id .
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Proof. We claim that

W
(d)= N−

p
2W (GOE) +W ′ (2.3.10)

where WGOE is distributed as a GOE matrix (i.e., independent Gaussian entries up to symmetry

with E[(W (GOE)
ij )2] = 1+δij

N ) and where W ′ is some real symmetric Gaussian matrix independent of

W (GOE).

Indeed, consider the N2 ×N2 covariance matrix CW of the full matrix W (not just the upper

triangle). We will index this by matrix locations, i.e., CW has entries (CW )(i,j),(k,`). Write CGOE for

the covariance matrix for GOE. We index a vector B ∈ RN2 similarly, writing B(i,j), and associate

with it the matrix B̃ ∈ RN×N defined by

B̃ij = B(i,j).

Notice that the matrix B̃ need not be symmetric. Whenever B has unit norm, we have

〈B,CGOEB〉 = 1
N

∑
i,j,k,`

B(i,j)(δikδj` + δi`δjk)B(k,`) = 1
N

Tr(B̃B̃T + B̃2) = 1
N

Tr

(B̃ + B̃T

2

)2
.

Thus by the weak-fullness assumption (wF) we have

〈B,CWB〉 = E
[
(Tr(B̃W ))2

]
= E

(Tr
((

B̃ + B̃T

2

)
W

))2


> N−1−p Tr

(B̃ + B̃T

2

)2
 =

〈
B,N−pCGOEB

〉
.

To complete the proof of (2.3.10), we write

CW = N−pCGOE + (CW −N−pCGOE)

and interpret the matrix in parentheses on the right-hand side, which we just showed is positive

semi-definite, as the covariance matrix for W ′.
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Now we consider the N(N+1)
2 × N(N+1)

2 covariance matrix C = CW of the upper triangle of W ,

and define CGOE and CW ′ similarly. Then whenever v ∈ R
N(N+1)

2 is indexed with upper-triangular

entries we have

〈v, CW v〉 =
〈
v,N−pCGOEv

〉
+ 〈v, CW ′v〉 > N−p〈v, CGOEv〉

= N−1−p

∑
i6j

v2
(i,j) +

∑
i

v2
(i,i)

 > N−1−p‖v‖22

which concludes the proof.

Lemma 2.3.6. For every ζ > 0, there exists cζ > 0 such that the law of the upper triangle of HN ,

considered as a vector, satisfies the logarithmic-Sobolev inequality with constant cζ N
ζ

N .

Proof. Since the logarithmic-Sobolev inequality is preserved under translations, it suffices to prove

the statement with HN = WN + E[HN ] replaced by WN . This is essentially an exercise in spelling

out our model assumptions, which come from [75].

The upper triangle of WN is a Gaussian vector with covariance matrix C. Define the matrix |C|

by |C|(i,j),(k,`) =
∣∣∣C(i,j),(k,`)

∣∣∣, and whenever u ∈ R
N(N+1)

2 is a unit vector, define the unit vector |u|

by |u|(i,j) =
∣∣∣u(i,j)

∣∣∣. Then
〈u, Cu〉 6 〈|u|, |C||u|〉 6 ‖|C|‖.

But our assumptions (D) on correlation decay imply that ‖|C|‖ 6ζ Nζ

N ; see [75, (6b), Assumption

(C)], specifically noting that |||κ|||av
2 in their notation is the same as N‖|C|‖ in ours (the factor N

appears since their normalization is HN = AN + 1√
N
WN to our HN = AN +WN ).

Since C is invertible by Lemma 2.3.5, this implies the log-Sobolev inequality via the Bakry-

Émery criterion.

Lemma 2.3.7. The flatness assumption (F) implies, for each i, j,N ,

1
pN
6 Var((WN )ij) 6

p

N
.
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Proof. By writing ej for the jth canonical basis vector, understood as a column, and writing (·)T for

transposition, we have E[W 2
ij ] = E[WijWji] = E[Wej(ej)TW ]ii = (ei)TE[Wej(ej)TW ]ei, but by the

flatness assumption (F) we have 1
pN = 1

pN Tr(ej(ej)T ) 6 (ei)TE[Wej(ej)TW ]ei 6 p
N Tr(ej(ej)T ) =

p
N .

Lemma 2.3.8. We have supN E[‖HN‖] <∞.

Proof. Since we assumed supN ‖AN‖ < ∞, we need only check supN E[‖WN‖] < ∞ where W =

WN = HN −E(HN ). We apply the relevant local law from [75]. This local law provides a sequence

of measures µ̃N which well-approximate the empirical measure of W . The exact form of µ̃N does

not matter for our purpose; what does matter is [5, Proposition 2.1, Equation (4.2)], which we

combine to obtain supp(µ̃N ) ⊂ [−2
√

2p, 2
√

2p] uniformly in N . Then the local law [75, Corollary

2.3] implies that eigenvalues of W stick to supp(µ̃N ) in the sense that, for some constant C, we

have

P(‖W‖ > 2
√

2p+ 1) 6 CN−100.

Thus

E[‖W‖2] 6 (2
√

2p+ 1)2 + E[‖W‖21‖W‖>2
√

2p+1] 6 (2
√

2p+ 1)2 +
√
E[‖W‖4]P(‖W‖ > 2

√
2p+ 1)

and the last term is o(1) provided E[‖W‖4] satisfies some weak bound: Since the entries Wij are

centered Gaussian with variance at most p
N by Lemma 2.3.7, Hölder’s inequality gives

E[‖W‖4] 6 E[Tr(W 4)] 6
∑
i,j,k,`

E[WijWjkWk`W`i] 6
∑
i,j,k,`

(E[W 4
ij ]E[W 4

jk]E[W 4
k`]E[W 4

`i])1/4 6 3p2N2,

which is sufficient.

Lemma 2.3.9. There exists C such that, for every t > 0, we have

P(‖HN‖ > t) 6 e−
√
N max(t−C,0).
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Proof. For definiteness, we consider the logarithmic Sobolev inequality from Lemma 2.3.6 with

constant cN−1/2, c = c1/2. We apply Herbst’s lemma with the map HN 7→ ‖HN‖, which is

Lipschitz with constant
√

2 (by the Hoffman-Wielandt inequality), to obtain for any α > 0

E[eα‖HN‖] 6 eα supN E[‖HN‖]+ c
2N
−1/2α2

.

To finish, we bound E‖HN‖ with Lemma 2.3.8, choose α =
√
N , and apply Markov’s inequality, so

that the result applies for any C > supN E[‖HN‖] + c/2.

Proof of Corollary 2.1.8.B. By the Herbst argument, Lemma 2.3.6 implies assumption (L) on Lip-

schitz concentration.

We now check Assumption (W), with the measures µN given as the solutions of the Matrix

Dyson Equation. Most of this argument consists of importing results of Ajanki et al. and Erdős

et al. Indeed, combining [5, Proposition 2.1, Equation (4.2)], we find that the supports of the

measures µN satisfy

supp(µN ) ⊆ (−(‖AN‖+ 2
√

2p), ‖AN‖+ 2
√

2p). (2.3.11)

Since the right-hand side is uniformly bounded in N , so is the left-hand side. Furthermore, [5,

Proposition 2.2] shows that each µN admits a density µN with respect to Lebesgue measure (on

all of R), and that these densities are c-Hölder continuous for some universal c; hence they are

bounded, uniformly in N .

To check (2.1.9), we use Proposition 2.3.1. Write sN for the (random) Stieltjes transform of

µ̂HN . For the Stieltjes-transform estimate (2.3.1), we use the local law [75, Theorem 2.1(4b)], which

implies that there exists a universal constant c such that, for every sufficiently small ε > 0, there

exists Cε > 0 with

P
(∣∣sN (E + iN−cε)−mN (E + iN−cε)

∣∣ > N ε(1+2c)−1 for some |E| 6 N100
)
6 CεN

−100.
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Using the trivial bound 1
η for a Stieltjes transform evaluated at E + iη, we obtain

∣∣E[sN (E + iN−cε)]−mN (E + iN−cε)
∣∣ 6 N ε(1+2c)−1 + 2CεN cε−100

for all |E| 6 N100, which suffices to check (2.3.1). Moreover, if x > max supp(µN ) we have

∣∣∣FE[µ̂](x)− FµN (x)
∣∣∣ = 1− FE[µ̂](x) 6 P(‖HN‖ > x) 6 e−

√
N max(t−C,0)

from Lemma 2.3.9, and similarly for the left edge, which gives (2.3.2) and (2.3.3). This verifies

assumption (W).

Finally we check the Wegner estimate, with the general Schur-complement strategy. Recall we

wrote C for the covariance matrix of the upper triangle of H = HN (we will drop the subscript N

for the remainder of this proof). Now we will write C
ĵj

for its minor obtained by erasing the column

and row corresponding to Hjj . Since C is invertible by Lemma 2.3.5 (and positive semidefinite),

so is its minor C
ĵj

by interlacing. Conditioned on H
ĵj
, we have that Hjj is a Gaussian random

variable with (an explicit mean that does not matter now and) variance

(σ̃jj)2 : = Var(Hjj)−
∑

k6`,k′6`′

(k,`)6=(j,j)6=(k′,`′)

C(j,j),(k,`)((Cĵj)
−1)(k,`),(k′,`′)C(k′,`′),(j,j)

= 1
(C−1)jj

> λmin (C) > N−1−p,

where we used Lemma 2.3.5 in the last step. By Lemma 2.3.3 and Proposition 2.3.2, this proves

(2.1.5).

2.3.8 Block-diagonal Gaussian matrices. As in subsection 2.3.7, we will use Theorem 2.1.2

(concentrated input). Considered as a vector, the upper triangle of HN satisfies log-Sobolev with

constant p
N , since it consists of independent (possibly degenerate) Gaussians with variance at most

p
N . This implies the Lipschitz-concentration assumption (L).
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Now we check assumption (W). We assumed in (R) that the MDE measures µN have a bounded

density; they lie in a common compact set by the estimate [6, (3.32a)] and arguments like those

around (2.3.11), so it remains only to check (2.1.9), through Proposition 2.3.1. If sN denotes the

Stieltjes transform of HN , then the local law [6, (B.5)] implies that there exist universal constants

δ > 0 and P ∈ N such that, for every 0 < γ < δ, there exists Cγ with

P
(∣∣sN (E + iN−γ)−mN (E + iN−γ)

∣∣ > NγP

N
for some E ∈ R

)
6 CγN

−100.

For the tail estimate (2.3.2), we essentially mimic the proof in the case of Gaussian matrices with

a (co)variance profile, with the following differences: Here the estimate supN E[‖WN‖2] < ∞ is

easier, since (recall that WN is block-diagonal with blocks X1, . . . , XK) we have E[‖WN‖2]1/2 6∑K
i=1 E[‖Xi‖2]1/2, and it is classical that supN E[‖Xi‖2] <∞ since Xi is a Gaussian matrix whose

entries all have variance order 1
N , by assumption (MF). Since the log-Sobolev constant is now at

most p/N , we obtain P(‖HN‖ > t) 6 e−cN max(0,t−C) for some constants c, C > 0, which verifies

(2.3.2) and (2.3.3). This completes the proof of (2.1.9).

Finally we check the Wegner estimate (2.1.5) with Proposition 2.3.2. Here Lemma 2.3.3 applies

immediately, since the conditioning is trivial, and we assumed in (MF) that the variances on the

diagonal are all at least of order 1
N .

2.3.9 Free addition. We will use Theorem 2.1.2 (concentrated input). Write HN = E +AN +

ONBNO
T
N . Concentration for Lipschitz test functions follows from classical results of Gromov-

Milman: If S = E + supN>1(‖AN‖ + ‖BN‖) and f : R → R is Lipschitz, then (see, e.g., [7,

Corollary 4.4.30])

P
(∣∣∣∣ 1
N

Tr(f(HN ))− 1
N

E[Tr(f(HN ))]
∣∣∣∣ > δ) 6 2 exp

(
− δ2N2

128S2‖f‖2Lip

)
,

which suffices to check (2.1.10) and thus assumption (L).

For assumption (E) with the reference measure µN ≡ µA�µB, we will use the local law of Bao
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et al, [22, Corollary 2.8]: for every ε > 0 and all N > N0(ε), we have

P
(
dKS(µ̂HN , µA � µB) > N−1+ε

)
6 N−100.

This implies dKS(E[µ̂HN ], µA � µB) . N−1+ε. We obtain the same estimate for W1 as in the proof

of Proposition 2.3.1 (there are no tail estimates because all the measures µ̂HN and µA � µB are

supported on a common compact set).

It remains only to check the Wegner estimate (2.1.5). The argument is different depending if E

is in the bulk of µA � µB (meaning in the interior of the single-interval support), or if E is outside

the support. In the first case, we prove the Wegner estimate with the much stronger fixed-energy

universality results of Che-Landon [66, Theorem 2.1]. This result implies

lim
N→∞

P
(
HN has no eigenvalues in

(
E − ε

N(µA � µB)(E) , E + ε

N(µA � µB)(E)

))
= 1− F (ε),

where F (ε) is a special function found by solving the Painlevé V equation satisfying limε↓0 F (ε) = 0.

Thus

lim inf
N→∞

P
(
HN has no eigenvalues in

(
E − 1

N2 , E + 1
N2

))
> 1− lim sup

ε↓0
F (ε) = 1.

In the second case (if E is outside the support of µA � µB), the Wegner estimate is much easier,

since indeed P(no eigenvalues in (E − δ, E + δ)) → 1 for small enough δ. This follows, e.g., from

the large-deviations principle for the extremal eigenvalues of this model established by Guionnet

and Maïda [102], or from the edge rigidity of Bao et al. [22].

2.3.10 Proofs of examples showing necessity of assumptions. In this subsection we show

the importance of two of the tricker assumptions of Theorem 2.1.1. Precisely, for each of (2.1.4) and

Assumption (S), we give an explicit example satisfying all the assumptions of that theorem except

for the one in question, for which the conclusion fails. All notations refer back to that section.
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Our example where (2.1.4) fails and determinant concentration fails is the following: Let

(Xij)16i6j6N be centered, i.i.d. with variance 1 and a compactly supported and bounded den-

sity; choose some θ ∈ (0, 1) (e.g. θ = 1/8 works) and let A be deterministic, diagonal, and

defined through Aii = eN
θ
1i<N1−θ with all other entries zero; and define symmetric H = Φ(X) as

Hij = Φ(X)ij = Xij√
N

+Aij for i 6 j. In this example, µN = ρsc.

Our example where Assumption (S) fails and determinant concentration fails is the following:

Let (Xij)16i6j6N be as above, include the additional random variable X0 with P(X0 = N) =

N−1 = 1 − P(X0 = 0), and define A = X0 IdN ; then we let H = Φ(X) be symmetric defined by

Hij = Φ(X)ij = Xij√
N

+Aij for i 6 j. In this example, µN = ρsc.

In the remainder of this subsection, we prove that these examples have the claimed properties.

2.3.10.1 Necessity of bounds on large eigenvalues.

Write the compact support of the Xi’s as [−T, T ]. This proof is essentially an application of the

Weyl inequalities. Note that ‖Φ‖Lip = N−1/2; since the Xi’s are compactly supported, this means

Xcut = X for κ < 1/2 and N large enough, and hence (S) is trivially satisfied. Equation (2.1.5)

holds by Lemma 2.3.3. If κ < θ, then (E) holds with µN = ρsc by interlacing; indeed, defining the

matrix G by Gij = Xij√
N
, we have dKS(µ̂G, µ̂H) 6 1

N rank(A) = N−θ. Since G is a Wigner matrix

with all moments finite, [19, Theorem 4.1] shows dKS(E[µ̂G], ρsc) 6 N−1/4, and thus if θ < 1/4 we

have

dKS(E[µ̂H ], ρsc) . N−θ.

We transfer this from dKS to dBL in the same way as for Wigner matrices, above. For (2.1.6), the

Weyl inequalities give deterministically

|det(HN )| =
N∏
i=1
|λi(HN )| 6

N∏
i=1

(λi(A) + T
√
N)

= (eNθ + T
√
N)N1−θ(T

√
N)N−N1−θ

6 (2eNθ)N1−θ(T
√
N)N
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which suffices to check (2.1.6) (with any δ > 0).

On the other hand, (2.1.4) fails. Indeed, by the Weyl inequalities the N1−θ large eigenvalues of

H satisfy

λi > e
Nθ − T

√
N >

1
2e

Nθ
, (2.3.12)

so for ε < θ the failure of (2.1.4) follows from the deterministic estimate

N∏
i=1

(1 + |λi|1|λi|>eNε ) >
N∏

i=N−N1−θ+1
|λi|1|λi|>eNε >

(1
2e

Nθ
)N1−θ

= 2−N1−θ
eN .

The proof that determinant concentration fails is somewhat involved, but mimics the proof of

the lower bound of Theorem 2.1.1. The idea is that the largest N1−θ eigenvalues contribute a

factor of size eN , as above, and the rest of the eigenvalues behave as if semicircular (this is the

difficulty), so we get a lower bound for the determinant asymptotics that is order-one above what

the semicircle would predict. We now sketch how to prove this rigorously. Since X = Xcut, we

simplify our notation and write µ̂ = µ̂Φ(X). Recall our eigenvalues are ordered λ1 6 · · · 6 λN ; we

decompose this measure as

µ̂ = µ̂trunc + µ̂r. tail, µ̂trunc = 1
N

N−N1−θ∑
i=1

δλi , µ̂r. tail = 1
N

N∑
i=N−N1−θ+1

δλi .

Notice that µ̂trunc has mass 1 − N−θ and µ̂r. tail has mass N−θ. Compared to (2.2.2), the event

Ess is no longer necessary; the events Egap and Eb remain the same (since they clearly imply the

analogues for µ̂trunc), and each still has probability 1− o(1); the event Econc is replaced with

Etrunc
conc =

{∣∣∣∣∫ logKη d(µ̂trunc − E[µ̂trunc])
∣∣∣∣ 6 t}.

This is a likely event, since

∣∣∣∣∫ logKη d(µ̂r. tail − E[µ̂r. tail])
∣∣∣∣ 6 2 logη(K)µ̂r. tail(R) . N ε−θ <

t

2 (2.3.13)
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(here it matters that θ not be too small), and thus if ε < θ

1− P(Etrunc
conc ) 6 P

(∣∣∣∣∫ logKη d(µ̂− E[µ̂])
∣∣∣∣ > t

2

)
,

but the right-hand probability is o(1) by arguments as in the proof of Lemma 2.2.3. By mimicking

(2.2.6) but handling the large eigenvalues instead with (2.3.12), 1
N logE[|det(HN )|] is larger than

1− log 2
N θ

+ 1
N

E
[
eN
∫

(log|·|−logη)dµ̂trunc
1Egap1Etrunc

conc

]
− t+

∫
logKη dE[µ̂trunc]

= 1 +
∫

logKη (λ)E[µ̂trunc](dλ)− o(1),

where the last equality follows by mimicking Lemma 2.2.5. Now E[µ̂trunc] = E[µ̂] − E[µ̂r. tail],

and by (2.2.7) and arguments as in the proof of Lemma 2.2.2, we have
∫

logKη (λ)E[µ̂](dλ) >∫
log|λ|ρsc(dλ) + o(1). The term

∫
logKη (λ)E[µ̂r. tail] is handled as in (2.3.13). Overall, this gives

lim infN→∞ 1
N logE[|det(HN )|] > 1 +

∫
log|λ|ρsc(dλ) which contradicts (2.1.8).

2.3.10.2 Necessity of spectral stability. With T as above, the eigenvalues of H are at most

N +T
√
N deterministically; this implies (2.1.4) and (2.1.6). For (2.1.5), we note that on the event

{X0 = N}, the eigenvalues are at least N − T
√
N > 0, so there are clearly no eigenvalues near

zero; on the event {X0 = 0}, the matrix H is just a Wigner matrix, for which we proved (2.1.5)

above. Now we claim that assumption (E) holds with µN = ρsc. Indeed, for test functions f with

‖f‖Lip + ‖f‖L∞ 6 1 we have

E
[∣∣∣∣∫ f(x)(µ̂H − ρsc)(dx)

∣∣∣∣1X0=N

]
6 2P(X0 = N) = 2

N
,

and on the event 1X0=0 we revert to the Wigner case studied above.

On the other hand, notice that (Xcut)0 is always zero, so on the event {X0 = N} the measure

µ̂Φ(Xcut) is supported on [−T
√
N,T

√
N ] while µ̂Φ(X) is supported on [N − T

√
N,N + T

√
N ].

For large enough N these are disjoint, so the measures are one apart in KS distance, and thus
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P(dKS(µ̂Φ(X), µ̂Φ(Xcut)) > N−κ) > 1
N , which shows that (S) fails.

Finally, since

E[|det(H)|] > E[|det(H)|1X0=N ] > (N − T
√
N)NP(X0 = N),

we have 1
N logE[|det(H)|]→ +∞ and determinant concentration fails.

2.4 Variational principles and long-range correlations

2.4.1 General scheme. In this section, we study expected determinants in the presence of

long-range matrix correlations. The prototypical example to keep in mind is

HN = WN + ξ Id,

where WN is drawn from the Gaussian Orthogonal Ensemble (GOE), and ξ ∼ N (0, 1/N) is in-

dependent of WN . Matrices of this style are very common in the landscape-complexity program,

but our main theorems do not apply directly because of the presence of long-range correlations

(here, along the diagonal of HN ). Nevertheless, there is still a general procedure to understand

the determinant asymptotics for such matrices, which we illustrate in the case of this example. We

first notice

E[|det(HN )|] = 1√
2π/N

∫
R
e−N

u2
2 E[|det(WN + u)|] du.

Our determinant asymptotics do apply to WN + u, giving E[|det(WN + u)|] ≈ eNΣ(u) for some

constants Σ(u); then the Laplace method suggests

lim
N→∞

1
N

logE[|det(HN )|] = sup
u∈R

{
Σ(u)− u2

2

}
. (2.4.1)

91



This method has appeared before in special cases, for example in [11] and [88]. In Section 2.4.2,

we prove results of this type without reference to any particular matrix model. In Section 2.4.3,

we prove extensions necessary to understand asymptotics of the form

lim
N→∞

1
N

logE[|det(HN )|1HN>0].

In complexity computations, these “restricted determinants” correspond to counting just the local

minima among all critical points. The upshot is that this limit is also a variational problem as in

(2.4.1), but restricted to u in some good set instead of all Euclidean space.

2.4.2 Variational principles for unrestricted determinants. For applications to complex-

ity, we will need not just one matrix HN , but a field of matrices HN (u) for u ∈ Rm (here m is

independent of N), with approximating measures µN (u).

Theorem 2.4.1. Assume the following:

– (Assumptions locally uniform in u) Each HN (u) satisfies all the assumptions of Theorem

2.1.1, or all the assumptions of Theorem 2.1.2. In addition, all limits, powers, and rates in

these assumptions are uniform over compact sets of u.3

– (Limit measures) There exist probability measures µ∞(u) such that

dBL(µN (u), µ∞(u)) 6 N−κ if we are in the setting of Theorem 2.1.1, or

W1(µN (u), µ∞(u)) 6 N−κ if we are in the setting of Theorem 2.1.2

for κ = κ(u) > 0 that can, again, be chosen uniformly on compact sets of u. These measures

also admit densities µ∞(u, ·) on [−κ, κ] that satisfy µ∞(u, x) < κ−1|x|−1+κ for all |x| < κ.

– (Continuity and decay in u) For each N , the map u 7→ HN (u) is entrywise continuous.
3For example, writing (λi(u))Ni=1 for the eigenvalues of HN (u), the condition (2.1.4) becomes: for every compact

K ⊂ Rm, limN→∞ supu∈K 1
N

logE
[∏N

i=1(1 + |λi(u)|1|λi(u)|>eNε )
]

= 0 .
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Furthermore, there exists C > 0 such that

E[|det(HN (u))|] 6 (C max(‖u‖, 1))N . (2.4.2)

Then for any α > 0, any fixed p ∈ N, and any D ⊂ Rm with positive Lebesgue measure that is the

closure of its interior, we have

lim
N→∞

1
N

log
∫
D
e−(N+p)α‖u‖2E[|det(HN (u))|] du = sup

u∈D

{∫
R

log|λ|µ∞(u)(dλ)− α‖u‖2
}
.

Remark 2.4.2. A close inspection of the proof shows that the condition “D is the closure of its

interior” is only necessary for the lower bound in Theorem 2.4.1. For the upper bound, it suffices

to assume that D is simply closed (and has positive measure). We will use this below.

The proof of this theorem relies on the following two lemmas, in addition to determinant

concentration in the form of Theorem 2.1.1 or 2.1.2. We postpone their proofs until after the

proof of the theorem. Recall that BR is the ball of radius R around zero in Rm.

Lemma 2.4.3.

lim
R→∞

lim sup
N→∞

1
N

log
∫
BcR

e−Nα‖u‖
2
E[|det(HN (u))|] du = −∞.

Lemma 2.4.4. The function

Sα[u] =
∫
R

log|λ|µ∞(u)(dλ)− α‖u‖2,

is continuous, and lim‖u‖→+∞ Sα[u] = −∞.

Proof of Theorem 2.4.1. First we prove the upper bound. We apply Theorem 2.1.1 or 2.1.2 with the

reference measures µ∞(u). Since all inputs are uniform over compact sets of u, so is the conclusion;
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that is, for all R, we have

lim sup
N→∞

1
N

log sup
u∈BR

{
E[|det(HN (u))|]e−N

∫
R log|λ|µ∞(u)(dλ)

}
6 0

and a matching lower bound we will use momentarily. If R is large enough that |BR ∩D| > 0, then

we conclude

lim sup
N→∞

1
N

log
∫
BR∩D

e−(N+p)α‖u‖2E[|det(HN (u))|] du

6 lim sup
N→∞

1
N

log
∫
BR∩D

e−Nα‖u‖
2+N

∫
R log|λ|µ∞(u,λ) dλ du

6 sup
u∈D
Sα[u] + lim sup

N→∞

[ log(|BR ∩D)|
N

]
.

An application of Lemma 2.4.3 finishes the proof of the upper bound.

Now we prove the lower bound. Lemma 2.4.4 tells us that supu∈D Sα[u] is achieved at some

(possibly not unique) u0. Since Sα is continuous, for every ε > 0 there exists a bounded neigh-

borhood Uε of u0 on which Sα[u] > Sα[u0] − ε. Since D is the closure of its interior, we have

|Uε ∩D| > 0.

For each R, applying Theorem 2.1.1 or 2.1.2 with arguments as above yields

lim inf
N→∞

1
N

log inf
u∈BR

{
E[|det(HN (u))|]e−N

∫
R log|λ|µ∞(u)(dλ)

}
> 0.

If R is so large that Uε ⊂ BR, then

lim inf
N→∞

1
N

log
∫
D
e−(N+p)α‖u‖2E[|det(HN (u))|] du

> lim inf
N→∞

1
N

log
{
e−pαR

2
∫
Uε∩D

e−Nα‖u‖
2
E[|det(HN (u))|] du

}
> lim inf

N→∞

1
N

log
∫
Uε∩D

eNSα[u] du > lim inf
N→∞

1
N

log
∫
Uε∩D

eN(Sα[u0]−ε) du

> Sα[u0]− ε+ lim inf
N→∞

log(|Uε ∩D|)
N

.
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Letting ε→ 0 completes the proof.

Proof of Lemma 2.4.3. If ωm is the surface area of the unit ball in Rm, then from (2.4.2) we have

∫
BcR

e−Nα‖u‖
2
E[|det(HN (u))|] du 6

∫
BcR

eN(log(C‖u‖)−α‖u‖2) du = ωm

∫ ∞
R

eN(log(Cr)−αr2)rm−1 dr

which suffices by the Laplace method.

Proof of Lemma 2.4.4. Fix N . We assumed that HN (u) is an entrywise continuous function of

u. Since the determinant is a continuous function of the matrix entries, dominated convergence

(with dominating function given by (2.4.2)) says that E[|det(HN (u))|] is continuous in u, hence so

is 1
N logE[|det(HN (u))|]. Then Theorem 2.1.1 or 2.1.2 shows

lim
N→∞

sup
u∈BR

∣∣∣∣ 1
N

logE[|det(HN (u))|]−
∫
R

log|λ|µ∞(u)(dλ)
∣∣∣∣ = 0, (2.4.3)

and
∫
R log|λ|µ∞(u)(dλ) is the locally uniform limit of continuous functions. Thus Sα[u] is contin-

uous.

The decay at infinity follows from

∫
R

log|λ|µ∞(u)(dλ) 6 lim inf
N→∞

1
N

logE[|det(HN (u))|] 6 log(C max(‖u‖, 1)),

obtained by (2.4.3) and (2.4.2).

2.4.3 Variational principles for restricted determinants. Let G ⊂ Rm be the set of “good”

u values

G = {u ∈ Rm : µ∞(u)((−∞, 0)) = 0} = {u ∈ Rm : l(µ∞(u)) > 0}. (2.4.4)

95



For each ε > 0, consider the following inner and outer approximations of G:

G+ε = {u ∈ Rm : l(µ∞(u)) > 2ε},

G−ε = {u ∈ Rm : µ∞(u)((−∞,−ε)) 6 ε}.
(2.4.5)

Theorem 2.4.5. Fix some D ⊂ Rm, and suppose that D and the matrices HN (u) satisfy the

following.

– All the assumptions of Theorem 2.4.1.

– (Superexponential concentration) For every R > 0 and every ε > 0, we have

lim
N→∞

1
N logN log

[
sup
u∈BR

P(dBL(µ̂HN (u), µ∞(u)) > ε)
]

= −∞. (2.4.6)

– (No outliers) For every R > 0 and every ε > 0, we have

lim
N→∞

inf
u∈D∩G+ε∩BR

P(Spec(HN (u)) ⊂ [l(µ∞(u))− ε, r(µ∞(u)) + ε]) = 1. (2.4.7)

– (Topology) Each G+ε is convex; D is convex and closed; the set D∩G+1 has positive Lebesgue

measure; and

D ∩
(⋃
ε>0
G+ε

)
= D ∩ G. (2.4.8)

Then for any α > 0 and any fixed p ∈ N, we have

lim
N→∞

1
N

log
∫
D
e−(N+p)α‖u‖2E[|det(HN (u))|1HN (u)>0] = sup

u∈D∩G

{∫
R

log|λ|µ∞(dλ)− α‖u‖2
}
.

We prove the upper and lower bounds separately in the next two subsubsections.

2.4.3.1 Upper bound. The proof of the upper bound of Theorem 2.4.5 relies on the following

three lemmas, which we will prove after.
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Lemma 2.4.6. Each G−ε is closed, and G is closed.

Lemma 2.4.7. For every ε > 0, we have

lim
N→∞

1
N

log
∫

(G−ε)c
e−Nα‖u‖

2
E[|det(HN (u))|1HN (u)>0] du = −∞.

Lemma 2.4.8. We have

lim
ε↓0

sup
u∈D∩G−ε

Sα[u] 6 sup
u∈D∩G

Sα[u].

Proof of the upper bound in Theorem 2.4.5. For each ε > 0, Lemma 2.4.7 yields

lim sup
N→∞

1
N

log
∫
D
e−(N+p)α‖u‖2E[|det(HN (u)|1HN (u)>0] du

6 lim sup
N→∞

1
N

log
∫
D∩G−ε

e−Nα‖u‖
2
E[|det(HN (u))|1HN (u)>0] du

6 lim sup
N→∞

1
N

log
∫
D∩G−ε

e−Nα‖u‖
2
E[|det(HN (u))|] du 6 sup

u∈D∩G−ε
Sα[u].

The last inequality holds by Theorem 2.4.1 applied to D ∩ G−ε, which is closed (by Lemma 2.4.6)

and has positive measure (as a superset of D∩G+1, which has positive measure by assumption). By

Remark 2.4.2, these are the only conditions we need to check. Letting ε tend to zero and applying

Lemma 2.4.8 completes the proof.

Proof of Lemma 2.4.6. Since we assumed that u 7→ HN (u) is entrywise continuous and the spec-

trum is a continuous function of matrix entries, we have that u 7→ µ̂HN (u) is almost surely continuous

with respect to the bounded-Lipschitz distance:

dBL(µ̂HN (u), µ̂HN (u′)) 6
1
N

N∑
i=1

min(2,
∣∣λi(u)− λi(u′)

∣∣).
By dominated convergence, this means that u 7→ E[µ̂HN (u)] is continuous with respect to dBL. But

dBL(E[µ̂HN (u)], µ∞(u))→ 0 uniformly on compact sets of u by assumption (here we use dBL 6W1

for the concentrated-input case), so we conclude that u 7→ µ∞(u) is continuous with respect to dBL,
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as well. Since dBL metrizes weak convergence, and since the defining properties of G and G−ε can

be stated in terms of distribution functions of µ∞(u), which are continuous since each µ∞(u) has

a density with respect to Lebesgue, the lemma follows.

Proof of Lemma 2.4.7. From Lemma 2.4.3, it suffices to show

lim
N→∞

1
N

log
∫

(G−ε)c∩BR
e−Nα‖u‖

2
E[|det(HN (u))|1HN (u)>0] du = −∞

for each R > 0. If HN (u) > 0 and u ∈ (G−ε)c, then by taking some 1
2 -Lipschitz fε satisfying

ε
21x60 > fε(x) > ε

21x6−ε we obtain dBL(µ̂HN (u), µ∞(u)) > ε
2µ∞(u)((−∞,−ε)) > ε2

2 . For small

δ > 0, this gives

∫
(G−ε)c∩BR

e−Nα‖u‖
2
E[|det(HN (u))|1HN (u)>0] du

6 |BR|
(

sup
u∈BR

E[|det(HN (u))|1+δ]
1

1+δ

)(
sup
u∈BR

P(dBL(µ̂HN (u), µ∞(u)) > ε2

2 )
) δ

1+δ

.

This suffices by (2.1.6) and (2.4.6).

Proof of Lemma 2.4.8. From their definitions, we have
⋂
ε>0 G−ε = G. We take the intersection of

both sides with D. Next, we claim that there exists some R > 0 such that

sup
u∈D∩G

Sα[u] = max
u∈(D∩G∩BR)

Sα[u] and sup
u∈D∩G−ε

Sα[u] = max
u∈(D∩G−ε∩BR)

Sα[u] (2.4.9)

for every ε > 0. Indeed, the proof of Lemma 2.4.4 shows that

Sα[u] 6 log(C‖u‖)− α‖u‖2

on Rm. Since Sα is continuous and D ∩ G is closed by Lemma 2.4.6, let u∗ ∈ D ∩ G satisfy

supu∈D∩G S[u] = S[u∗], and let R > 1 be so large that log(CR)− αR2 < Sα[u∗].

For each ε, since D ∩ G−ε is closed (again by Lemma 2.4.6), let uε be such that Sα[uε] =
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supu∈D∩G−ε Sα[u]. Then uε ∈ BR; otherwise, we would have

max
u∈D∩G−ε

Sα[u] = Sα[uε] 6 log(CR)− αR2 < Sα[u∗] = max
u∈D∩G

Sα[u] 6 max
u∈D∩G−ε

Sα[u].

This verifies (2.4.9).

Since the {uε} lie in a compact set, they have a limit point u0 up to extraction. Furthermore,

u0 ∈ D∩G = ∩ε(D∩G−ε). Indeed, otherwise a neighborhood of u0 would be contained in (D∩G−ε1)c

for some ε1, hence in (D∩G−ε)c for every ε < ε1 (since the sets are nested). But then u0 could not

be a limit point of {uε}.

Thus by continuity of Sα we have

lim
ε↓0

sup
u∈D∩G−ε

Sα[u] = lim
ε↓0
Sα[uε] = Sα[u0] 6 sup

u∈D∩G
Sα[u].

2.4.3.2 Lower bound. The proof of the lower bound in Theorem 2.4.5 relies on the following

two lemmas, which we will prove after.

Lemma 2.4.9. For each u ∈ Rm and each δ, ε > 0, define the set of probability measures

M(u, δ, ε) = {µ : dBL(µ, µ∞(u)) < δ and supp(µ) ⊂ [l(µ∞(u))− ε, r(µ∞(u)) + ε]}

that are close to µ∞(u) both in dBL and in support. For all R, all δ, and all ε sufficiently small

depending on R, we have

inf
u∈D∩G+ε∩BR

(
inf

µ∈M(u,δ,ε)

∫
log|λ|µ(dλ)−

∫
log|λ|µ∞(u)(dλ)

)
> −2δ

ε
.
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Lemma 2.4.10. Each G+ε is closed, and for all R large enough we have

sup
u∈D∩G

Sα[u] = max
u∈D∩G∩BR

Sα[u] and sup
u∈D∩G+ε

Sα[u] = max
u∈D∩G+ε∩BR

Sα[u] (2.4.10)

for every 0 < ε < 1. Furthermore,

lim
ε↓0

sup
u∈D∩G+ε

Sα[u] = sup
u∈D∩G

Sα[u]. (2.4.11)

Proof of the lower bound in Theorem 2.4.5. Since

P(µ̂HN (u) 6∈M(u, δ, ε))

6 P(Spec(HN (u)) 6⊂ [l(µ∞(u))− ε, r(µ∞(u)) + ε]) + P(dBL(µ̂HN (u), µ∞(u)) > δ),

(2.4.7) and (2.4.6) tell us that

lim
N→∞

1
N

log
(

inf
u∈D∩G+ε∩BR

P(µ̂HN (u) ∈M(u, δ, ε))
)

= 0. (2.4.12)

Let R satisfy Lemma 2.4.10, and additionally be so large that
∣∣∣D ∩ G+1 ∩BR

∣∣∣ > 0. If ε < 1 is

sufficiently small depending on R, then by Lemma 2.4.9 we have

∫
D
e−(N+p)α‖u‖2E[|det(HN (u))|1HN (u)>0] du

> e−pαR
2
∫
D∩G+ε∩BR

e−Nα‖u‖
2 exp

(
N inf

µ∈M(u,δ,ε)

∫
log|λ|µ(dλ)

)
P(µ̂HN (u) ∈M(u, δ, ε)) du

> e−pαR
2
(

inf
u∈D∩G+ε∩BR

P(µ̂HN (u) ∈M(u, δ, ε))
)

exp
(
−2Nδ

ε

)∫
D∩G+ε∩BR

eNSα[u] du.

Now we take the logarithm of both sides, divide by N , let N → ∞, and then let δ ↓ 0. The set

D∩G+ε∩BR is closed and convex, as the finite intersection of such sets. Since closed convex sets in

Euclidean space have empty interior if and only if they lie in a lower-dimensional affine space, we

conclude that D∩G+ε∩BR has nonempty interior from the fact that it has positive measure. Since
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a closed convex set with nonempty interior is the closure of its interior, we can apply Theorem 2.4.1

to this set. From this theorem and from (2.4.12), we have

lim inf
N→∞

∫
D
e−(N+p)α‖u‖2E[|det(HN (u))|1HN (u)>0] du > sup

u∈D∩G+ε∩BR
Sα[u] = sup

u∈D∩G+ε

Sα[u].

By (2.4.11), this suffices.

Proof of Lemma 2.4.9. Consider the function fu defined on [l(ρ∞(u))−ε, r(ρ∞(u))+ε] by fu(λ) =

log|λ|. If u ∈ D ∩ G+ε ∩BR, then

‖fu‖Lip + ‖fu‖L∞ 6
1
ε

+ max{|log(ε)|, |log(r(ρ∞(u)) + ε)|} 6 2
ε

where the last inequality holds for ε sufficiently small, uniformly over u ∈ BR, since supp(ρ∞(u)) is

compactly supported uniformly over u ∈ BR. This implies that whenever µ ∈ M(u, δ, ε), we have

|
∫

log|·|dµ−
∫

log|·|dµ∞(u, ·)| 6 2
εdBL(µ, µ∞(u)) 6 2δ

ε .

Proof of Lemma 2.4.10. The proof of Lemma 2.4.6 shows that the map u 7→ ρ∞(u) is continuous

with respect to weak convergence; thus each G+ε is closed.

The proof of Lemma 2.4.4 shows that Sα[u] 6 log(C‖u‖) − α‖u‖2 on Rm and that Sα is

continuous. Since D ∩ G is closed by Lemma 2.4.6, and each D ∩ G+ε is closed by the argument

above, we can write supu∈D∩G Sα[u] = Sα[u∗] for some u∗ and supu∈D∩G+ε Sα[u] = Sα[uε] for some

uε.

Let R > 1 be so large that log(CR) − αR2 < Sα[u1]. Then uε ∈ BR for each ε < 1; else we

would have

max
u∈D∩G+ε

Sα[u] = Sα[uε] 6 log(CR)− αR2 < Sα[u1] = max
u∈D∩G+1

Sα[u] 6 max
u∈D∩G+ε

Sα[u].

This verifies (2.4.10).
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For each ε > 0, let

f+ε(u) =


Sα[u] if u ∈ D ∩ G+ε,

−∞ otherwise,
f+0(u) = sup

ε>0
f+ε(u) =


Sα[u] if u ∈ D ∩ (∪ε>0G+ε),

−∞ otherwise.

Since the G+ε’s are nested and Sα is continuous, we have

lim
ε↓0

sup
u∈D∩G+ε

Sα[u] = sup
ε>0

sup
u∈D∩G+ε

Sα[u] = sup
ε>0

sup
u∈Rm

f+ε(u) = sup
u∈Rm

sup
ε>0

f+ε(u) = sup
u∈Rm

f+0(u)

= sup
u∈D∩(∪ε>0G+ε)

Sα[u] = sup
u∈D∩(∪ε>0G+ε)

Sα[u] = sup
u∈D∩G

Sα[u],

where the last equality follows from (2.4.8).

102



Chapter 3

Landscape complexity beyond

invariance and the elastic manifold

This chapter is essentially borrowed from [36], joint with Gérard Ben Arous

and Paul Bourgade, which will appear on the arXiv soon.

3.1 Introduction

3.1.1 Complexity of the landscape of disordered elastic systems. The elastic manifold

is a paradigmatic representative of the class of disordered elastic systems. These are surfaces

with rugged shapes resulting from a competition between random spatial impurities (preferring

disordered configurations), on the one hand, and elastic self-interactions (preferring ordered con-

figurations), on the other. The model is defined through its Hamiltonian (3.2.2); for example, a

one-dimensional such surface is a polymer; a d-dimensional such surface could describe the interface

between ordered phases with opposite signs in a (d + 1)-dimensional Ising model. Among other

motivations, the elastic manifold is interesting because it displays a (de)pinning phase transition,

which is a certain nonlinear response to a driving force: if one applies an external force to the

surface at zero-temperature equilibrium, then the surface moves if and only if the force is above
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the depinning threshold. The elastic manifold also has a long history as a testing ground for new

approaches, for example for fixed d by Fisher using functional renormalization group methods [80],

and in the high-dimensional limit by Mézard and Parisi using the replica method [122].

In the same diverging dimension regime, we study the energy landscape of this model, through

the expected number of configurations that locally minimize the Hamiltonian against small pertur-

bations. We also count the expected number of critical configurations. Our main result, Theorem

3.2.4, gives the phase diagram in the model parameters, and identifies the boundary between sim-

ple and glassy phases as a physical parameter known as the Larkin mass, which appears in the

(de)pinning theory, confirming recent formulas by Fyodorov and Le Doussal [88].

The proof proceeds by dimension reduction and naturally leads to analyzing a generalization of

the zero-dimensional elastic manifold. The original zero-dimensional elastic manifold is

HN (x) = VN (x) + µ

2 ‖x‖
2, (3.1.1)

where VN : RN → R is an isotropic Gaussian field and µ > 0. This has been studied by Fyodorov as

a toy model of a disordered system; it admits a continuous phase transition between order for large

µ and disorder for small µ [84]. We replace the parabolic well confinement µ
2‖x‖

2 with any positive

definite quadratic form 1
2〈x,DNx〉, to see how different signal strengths in different directions affect

the complexity; this defines the model of soft spins in an anisotropic well. Theorem 3.2.8 identifies

a simple scalar parameter distinguishing between positive and zero complexity in high dimension,

namely the negative second moment of the limiting empirical measure of DN . We also find that the

near-critical decay of complexity is described by universal exponents: quadratic for total critical

points, and cubic for minima.

Our work is part of the landscape complexity research program, which was initially developed

for a variety of functions which are invariant under large classes of isometries (see Section 3.1.3).

We address landscapes lacking this property, which we call “non-invariant.” The elastic manifold

model is a proof of concept for our general approach, which relies on the Kac-Rice formula to reduce
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complexity to the calculation of the determinant of random matrices, and on our companion paper

[35] for such determinant asymptotics for random matrix ensembles which are not invariant under

orthogonal conjugacy. This gives variational formulas for the annealed complexity such as Theorem

3.4.1 for the elastic manifold.

Such variational problems associated to high dimensional Gaussian fields are not solvable in

general (see e.g. the companion paper [120] about bipartite spherical spin glasses). However, for

the elastic manifold, a key convexity property inherited from the associated Matrix Dyson Equation

(see Proposition 3.4.9) reduces the dimension of the relevant variational formula, mapping the

problem to the complexity of the soft spins in an anisotropic well model for a specific DN . We then

find integrable dynamics to analyze the variational problems associated to the general soft spins in

an anisotropic well model, and obtain the complexity thresholds mentioned above.

3.1.2 Determinants and the Kac-Rice formula. As mentioned in the previous section, the

Kac-Rice formula provides a bridge between random geometry and random matrix theory. If f is

a Gaussian field with enough regularity on a nice compact manifold M, and if Crtf (t, k) denotes

the number of critical points of f of index k at which f 6 t, then this formula reads

E[Crtf (t, k)] =
∫
M

E
[∣∣∣det(∇2f(σ)

∣∣∣1{f(σ) 6 t, i(∇2f(σ)) = k}
∣∣∣∇f(σ) = 0

]
φσ(0) dσ.

Here i(·) is the index and φσ(0) is the density of ∇f(σ) at 0. In the models of this paper, we

will always take M to be the whole Euclidean space (with the necessary arguments to account

for non-compactness). Thus the Kac-Rice formula transforms questions about critical points into

questions about the (conditional) determinant of the random matrix ∇2f(σ). For an introduction

to the Kac-Rice formula, we direct the reader to [2, 17]. In a digestible special case, if Crtf is the

total number of critical points of f , then

E[Crtf ] =
∫
M

E
[∣∣∣det(∇2f(σ)

∣∣∣∣∣∣∇f(σ) = 0
]
φσ(0) dσ. (3.1.2)
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In one dimension, this formula dates back to the 1940s [107, 133]. For many years it was used for

small, fixed dimension in applications such as signal processing [134] and oceanography [117]. For

more modern results in fixed dimension, we refer the reader to [16].

3.1.3 Rotationally invariant models. In a breakthrough insight, [84] used the Kac-Rice for-

mula in diverging dimension, to study asymptotic counts of critical points via asymptotics of random

determinants. For example, if f = fN in the above discussion is defined on an N -dimensional man-

ifold, one attempts to compute limN→∞
1
N logE[CrtfN ]. The papers [84] and [94] studied isotropic

Gaussian fields in radially symmetric confining potentials; the centered isotropic case without con-

fining potentials (but in finite volume) was treated in [62]. Work has been done in the mathematics

and physics literature on complexity for spherical p-spin models, starting with [10] (for pure mod-

els) and [9] (for mixtures). Similar techniques were used to understand the spiked-tensor model in

[43]. Intricate questions, such as the number of critical points with fixed index at given overlap

from a minimum, are considered for pure p-spin models in [135]. We also mention [78] for an up-

per bound on the number of critical points of the TAP free energy of the Sherrington-Kirkpatrick

model, and the recent works [29, 30] on neural networks, [13] on Gaussian fields with isotropic

increments, [38] on stable/unstable equilibria in systems of non-linear differential equations, and

[34] on mixed spherical spin glasses with a deterministic external field. In most of these models, the

conditioned Hessian is closely related to the Gaussian Orthogonal Ensemble (GOE), a consequence

of distributional symmetries of the landscapes.

The above results handle the average number of critical points. It is another question entirely

to prove concentration, i.e. to show that the average (annealed) number of points is also typical

(quenched). Proving concentration typically involves intricate second-moment computations, which

are also possible via the Kac-Rice formula, but which involve determinant asymptotics for a pair

of (usually correlated) random matrices. To our knowledge this has only been carried out for p-

spin models, both for pure models [141, 12] and for certain mixtures which are close to pure [44].

The quenched asymptotics are not always expected to match the annealed ones; for more intricate
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questions in pure p-spin, physical computations based on the replica trick suggest a qualitative

picture of this failure [136, 137].

3.1.4 Non-invariant models. In many models of interest, it happens that the law of the

conditioned Hessian in (3.1.2) does not depend on σ, and that it has long-range correlations induced

by a fixed (not depending onN) numberm of independent Gaussian random variables. For example,

this law might match that ofWN +ξ Id, whereWN is symmetric with independent Gaussian entries

with a variance profile or large zero blocks, and ξ ∼ N (0, 1
N ) is independent of WN ; the resulting

matrix has “long-range correlations” because the diagonal entries are all correlated with each other,

and m = 1 because these correlations are induced by ξ ∈ R1. In these models, by integrating over

this small number of variables last, the difficult term in the Kac-Rice formula (3.1.2) takes the form

∫
Rm

e−N
‖u‖2

2 E[|det(HN (u))|] du (3.1.3)

for some Gaussian random matrices HN (u) which may be far from GOE. (In the example above,

HN (u) = WN + u Id.)

The problem then reduces to the exponential asymptotics of (3.1.3). In the companion paper

[35], we establish two types of results about (3.1.3). First, we show asymptotics for a single matrix

of the form

E[|det(HN (u))|] = exp
(
N

∫
R

log|λ|µN (u,dλ) + o(N)
)
. (3.1.4)

Here the deterministic probability measures µN (u) = µN (u, ·) come from the theory of the Matrix

Dyson Equation (MDE), developed in the random-matrix literature by Erdős and co-authors in the

last several years. Second, after this identification, (3.1.3) looks like a Laplace-type integral (with

error terms), but the measures µN depend on N , meaning (3.1.3) may take the form
∫
Rm e

NfN (u) du

instead of the more-desirable
∫
Rm e

Nf(u) du. In [35], we show that – assuming the limits µN (u)→

µ∞(u) exist – the Laplace method can be carried out on (3.1.3).

In this paper we discuss how to identify the limits µN (u) → µ∞(u) for the elastic manifold
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and soft spins in an anisotropic well (a third model is treated in the companion paper [120]). This

is model-dependent, although we identify some common techniques. This leads to the following

informal statement:

Metatheorem 3.1.1. LetMN be a nice sequence of N -dimensional manifolds, and let fN :MN →

R be a sequence of Gaussian random landscapes with the properties discussed above (namely, the

law of the conditioned Hessian is independent of the basepoint onMN , and long-range correlations

are induced by m independent variables). If the limiting empirical measures µ∞(u) can be identified

and some regularity established in u (and we present models where this is possible), then

lim
N→∞

1
N

E[CrtfN ] = sup
u∈Rm

{∫
R

log|λ|µ∞(u,dλ)− ‖u‖
2

2

}
+ simpler non-variational term. (3.1.5)

The non-variational term comes from the density of the gradient in the Kac-Rice formula: precisely,

it is equal to limN→∞
1
N log

∫
MN

φσ(0) dσ, which is typically easy to calculate.

We also wish to count local minima, for which the analogue of (3.1.3) is

∫
D
e−N

‖u‖2
2 E[|det(HN (u))|1HN (u)>0] du.

If we define the set

G = {u ∈ Rm : µ∞(u)((−∞, 0)) = 0}

of good u values for which {HN (u) > 0} is a likely event, then the upshot is that at exponential

scale we have

E[|HN (u)|1HN (u)>0] ≈


E[|HN (u)|] if u ∈ G,

0 otherwise.
(3.1.6)

(All the matrices HN (u) we encounter have asymptotically no outliers; otherwise, large-deviations

estimates for edge eigenvalues would impact the final result.) This gives an analogue of Metatheorem

3.1.1 for the complexity of local minima, where the variational problem is restricted to a supremum

over u ∈ G instead of u ∈ Rm. Again, the argument was presented in [35] assuming the existence
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of limits µN (u)→ µ∞(u); in this paper we verify this assumption.

The goal of this paper is to carry out this program for the elastic manifold and the anisotropic

soft spins model, yielding precise versions of Metatheorem 3.1.1 and its analogue for minima. In

fact, for these particular models the variational problem in (3.1.5) turns out to be integrable,

as mentioned at the end of Section 3.1.1: By introducing a dynamic version of the optimization

(3.1.5), we can distinguish regimes of positive and zero complexity. In addition, we can study near-

critical behavior at this phase transition, showing that complexity of total critical points tends

to zero quadratically, whereas complexity of local minima tends to zero cubically. These critical

exponents were already known for certain models [84, 94]; we show their universality by extending

substantially the class of models exhibiting these quadratic and cubic transitions.

We state our main results in Section 3.2. Section 3.3 provides techniques that will be shared

across models, showing how the (well-established) stability theory of the MDE allows one to replace

µN (u) by µ∞(u) as discussed above, if one has a candidate µ∞. In the remaining sections, we

propose candidates for µ∞ and carry out this program for each of our models in turn. In Appendix

B, we prove a result in free probability necessary to identify near-critical complexity of our models,

and possibly of independent interest: The free convolution of any (compactly supported) measure

with the semicircle law decays at least as quickly as a square root at its extremal edges.

Notations. We write ‖ · ‖ for the operator norm on elements of CN×N induced by Euclidean

distance on CN , and if S : CN×N → CN×N , we write ‖S‖ for the operator norm induced by ‖ · ‖.

We let

‖f‖Lip = sup
x6=y

∣∣∣∣f(x)− f(y)
x− y

∣∣∣∣
for test functions f : R→ R, and write d for the bounded-Lipschitz distance on probability measures

on R:

dBL(µ, ν) = sup
{∣∣∣∣∫

R
f d(µ− ν)

∣∣∣∣ : ‖f‖Lip + ‖f‖L∞ 6 1
}
.
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We will need the semicircle law of variance t, which we write as

ρsc,t(dx) =
√

4t− x2

2πt 1x∈[−2
√
t,2
√
t] dx,

as well as the abbreviation ρsc = ρsc,1 for the usual semicircle law supported in [−2, 2]. We write

l(µ) for the left edge (respectively, r(µ) for the right edge) of a compactly supported measure µ.

For an N ×N Hermitian matrix M , we write λmin (M) = λ1(M) 6 · · · 6 λN (M) = λmax (M) for

its eigenvalues and

µ̂M = 1
N

N∑
i=1

δλi(M)

for its empirical measure. We write � for the entrywise (i.e., Hadamard) product of matrices, and

� for the free (additive) convolution of probability measures. Given a matrix T , we write diag(T )

for the diagonal matrix of the same size obtained by setting all off-diagonal entries to zero. In

equations, we sometimes identify diagonal matrices with vectors of the same size. We write BR

for the ball of radius R about zero in the relevant Euclidean space. We use (·)T for the matrix

transpose, which should be distinguished both from (·)∗ for the matrix conjugate transpose, and

from Tr(·) for the matrix trace.

Unless stated otherwise, z will always be a complex number in the upper half-plane H = {z ∈

C : Im(z) > 0}, and we always write its real and imaginary parts as z = E + iη.
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3.2 Main results

3.2.1 Elastic manifold. Fix positive integers L (“length”) and d (“internal dimension”), posi-

tive numbers µ0 (“mass”) and t0 (“interaction strength”), and write Ω for the lattice J1, LKd ⊂ Zd,

understood periodically. Let VN be a centered Gaussian field on RN × Ω with

E[VN (y1, x1)VN (y2, x2)] = NB

(
‖y1 − y2‖2

N

)
δx1,x2 ,

for some function B : R+ → R+ called the correlator. Schoenberg characterized all possible such

correlators [139, Theorem 2] (see also [156]); B must have the representation

B(x) = c0 +
∫ ∞

0
exp(−t2x)ν(dt) (3.2.1)

for some c0 > 0 and some finite non-negative measure ν on (0,∞). In particular B is infinitely dif-

ferentiable and non-increasing on (0,∞). We assume that B is also four times differentiable at zero,

which implies via Kolmogorov’s criterion that each VN (·, x) is almost surely twice differentiable.

We will also assume

0 < |B(i)(0)| for i = 0, 1, 2,

which should be interpreted as a non-degeneracy condition on the field (i = 0), its gradient (i = 1),

and its Hessian (i = 2). This is a very mild assumption; indeed it holds by dominated convergence

as soon as the measure ν in (3.2.1) has a finite fourth moment and is not the zero measure.

To each deterministic function u : Ω → RN (“point configuration,” but sometimes “manifold”

after the continuous analogue) associate the random Hamiltonian

H[u] =
∑
x,y∈Ω

(µ0 Id−t0∆)xy〈u(x),u(y)〉+
∑
x∈Ω

VN (u(x), x). (3.2.2)

Here ∆ ∈ RLd×Ld is the (periodic) lattice Laplacian on Ω, so the (x, y) entry of µ0 Id−t0∆ is given
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by

(µ0 Id−t0∆)xy = µ0δx=y − t0(δx∼y − 2dδx=y),

where x ∼ y means that x and y are lattice neighbors. (Following [88], our Laplacian is a negative

sign off from the typical mathematical convention.)

Notice that the different energies compete: If the disorder VN vanished in (3.2.2), then since

µ0 Id and −t0∆ are both positive semidefinite, the ground-state configuration would be the flat one

u ≡ 0. On the other hand, the disorder VN prefers certain random configurations; the interaction

−t0∆ prefers to keep these configurations from becoming too jagged; and the confinement µ0 prefers

to keep them close to the origin. See Figure 1.2 for a graphical interpretation.

History. Hamiltonians of this flavor have been used to model a wide variety of problems featuring

surfaces with self-interactions in disordered media. For example, when d = 1, the model is a

polymer, related to the KPZ universality class; when N = d + 1, the model is an interface, such

as that between regions of opposite magnetization in a ferromagnet. We direct readers to [95]

and [96] for a review of disordered elastic media in general and to [89] for a review of this specific

Hamiltonian, which we summarize briefly here.

Two phenomena are of primary interest: the depinning threshold fc and the wandering (or

roughness) exponent ζ. The former refers to the manifold’s nonlinear response to an applied force

f , a consequence of the impurities in the potential V : at zero temperature, it moves from its

preferred position only if the force is above the depinning threshold f > fc = fc(L, d, t0, N),

whereas if f 6 fc it does not move at all and is said to be pinned. (Depinning is typically discussed

in the massless limit µ0 ↓ 0, but restricting the manifold points to lie in a finite box. At positive

temperature, the manifold can move when f < fc, but the movement is typically slow and is called

creep; the movement above fc is faster.) Depinning is related to complexity: Adding a force changes

the Hamiltonian, and the landscape is supposed to simplify as f increases; then fc can be defined

as the smallest f for which the resulting (quenched) complexity vanishes. We do not study this
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connection further, but refer readers to a discussion in [88].

The wandering exponent ζ, which depends on d and N , is defined by

E[(u0(x)− u0(y))2] ∼ ‖x− y‖2ζ

where u0 is the ground state. It is generally believed that ζ = 0, i.e. that the manifold is flat, for d >

4. Larkin proposed a simplification of the Hamiltonian (3.2.2), replacing the terms VN (u(x), x) with

their linearizations VN (0, x)+∂yVN (0, x)|y=0u(x). This so-called Larkin model is solvable and gives

ζ =
(

4−d
2

)
+
; note also that the Larkin model is quadratic in u, hence only has one local minimum,

i.e., is necessarily zero-complexity. Physicists believe that the Larkin model is a good approximation

for the elastic manifold when L is below the Larkin length Lc, with Lc ∼ (B′′(0))−1/(4−d) for weak

disorder. Above the Larkin length the approximation is supposed to break down, and describing the

physics of the elastic manifold (in particular finding ζ) is more challenging. This regime inspired

early technical developments of Fisher in functional renormalization group methods [80] and of

Mézard and Parisi in the replica method [122]; the latter paper suggested that the system exhibits

zero-temperature replica symmetry breaking for small µ0 in the N → +∞ limit. (This is the same

limit we will consider, although of course one is ultimately interested in finite-N results.) Increasing

the “mass” µ0 has the effect of simplifying the landscape, and for µ0 larger than a Larkin mass

µc (related to the Larkin length Lc), the system is believed to be replica symmetric. In fact the

Larkin mass is central to our results; we are making rigorous a result of Fyodorov and Le Doussal

suggesting that, for all other parameters fixed, µc is precisely the boundary between zero complexity

(for µ0 > 2
√
B′′(0)µc) and positive complexity (for µ0 6 2

√
B′′(0)µc). The same µc serves as the

boundary both for total critical points and for local minima.

There are some previous complexity results for special cases. When d = 0, the system is

interpreted by convention as being a single point, i.e., it reduces to the Hamiltonian (3.1.1). Fy-

odorov computed the complexity of (3.1.1) and found a continuous phase transition in µ: For

µ > µc, the annealed complexity (of the total number of critical points) is zero and the land-

113



scape is “simple,” but for µ < µc the annealed complexity is positive and the landscape is “com-

plex” or “glassy” [84]. Later, Fyodorov and Williams showed that this phase transition matches

that of replica-symmetry/replica-symmetry-breaking at zero temperature [94], interpreting replica-

symmetry-breaking as “a replica-symmetric computation of the free energy becomes unstable in

the zero-temperature limit.” For more discussion of the d = 0 case, see Section 3.2.2 below. When

d = 1, the model is an elastic line, with complexity studied in the case of N = 1 and L → +∞ in

[90].

Results. Let Ntot be the random number of stationary points of the Hamiltonian, i.e., of functions

u : Ω → RN such that ∂ui(x)H[u] = 0 for every x ∈ Ω and every i = 1, . . . , N . Let Nst be the

number of local minima.

Definition 3.2.1. For any µ0, t0, b > 0, define

Σ(µ0, t0, b) = Σ(µ0, t0, b, L, d)

= − 1
Ld

log(det(µ0 IdLd×Ld −t0∆)) + sup
u∈R

{∫
R

log|λ− u|(ρsc,b � µ̂−t0∆+µ0 Id)(λ) dλ− u2

2b

}
,

Σst(µ0, t0, b) = Σst(µ0, t0, b, L, d)

= − 1
Ld

log(det(µ0 IdLd×Ld −t0∆))

+ sup
u6l(ρsc,b�µ̂−t0∆+µ0 Id)

{∫
R

log|λ− u|(ρsc,b � µ̂−t0∆+µ0 Id)(λ) dλ− u2

2b

}
.

(3.2.3)

Theorem 3.2.2. We have

lim
N→∞

1
NLd

logE[Ntot] = Σ(µ0, t0, 4B′′(0)),

lim
N→∞

1
NLd

logE[Nst] = Σst(µ0, t0, 4B′′(0)).
(3.2.4)

Definition 3.2.3. For any t0, b > 0, let the Larkin mass µc = µc(t0, b, L, d) be the unique positive
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solution to ∫
R

µ̂−t0∆(dλ)
(µc + λ)2 = 1

b
. (3.2.5)

It will also be useful to define, for any µ0, t0 > 0, the critical noise parameter

bc = bc(µ0, t0, L, d) =
(∫

R

µ̂−t0∆(dλ)
(µ0 + λ)2

)−1
.

For µ0 < µc(t0, b, L, d), we write c = c(µ0, t0, b, L, d) for the unique positive value satisfying

∫
R

µ̂−t0∆(dλ)
(µ0 + λ)2 + b2c

= 1
b

and use this to define

v = v(µ0, t0, b, L, d) = −b
∫
R

µ0 + λ

(µ0 + λ)2 + b2c
µ̂−t0∆(dλ).

Finally, we need the positive numbers

ctot(µ0, t0, L, d) =

(∫
R
µ̂−t0∆(dλ)
(µ0+λ)2

)4

4
(∫

R
µ̂−t0∆(dλ)
(µ0+λ)4

) , cmin(µ0, t0, L, d) =

(∫
R
µ̂−t0∆(dλ)
(µ0+λ)2

)6

24
(∫

R
µ̂−t0∆(dλ)
(µ0+λ)3

)2 .

Theorem 3.2.4. For each t0 and B′′(0), the Larkin mass µc separates the phases of positive

and zero complexity, both for total critical points (whose complexity exhibits quadratic near-critical

behavior) and for local minima (whose complexity exhibits cubic near-critical behavior).

More precisely, the complexity functions satisfy the following, where b = 4B′′(0):

(i) if µ0 > µc(t0, b, L, d), then Σ(µ0, t0, b) = Σst(µ0, t0, b) = 0;
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(ii) if µ0 < µc(t0, b, L, d), then Σ(µ0, t0, b) > Σst(µ0, t0, b) > 0, and these are given by

Σ(µ0, t0, b) = − 1
Ld

log(det(µ0 Id−t0∆)) +
∫
R

log|λ− v|(ρsc,b � µ̂−t0∆+µ0 Id)(λ)(dλ)− v2

2b ,

Σst(µ0, t0, b) = − 1
Ld

log(det(µ0 Id−t0∆)) +
∫
R

log|λ− `|(ρsc,b � µ̂−t0∆+µ0 Id)(λ)(dλ)− `2

2b

where ` = l(ρsc,b � µ̂−t0∆+µ0 Id) and v is as above; and

(iii) for fixed µ0 and t0, and supercritical b, we have

Σ(µ0, t0, b) = ctot(µ0, t0, L, d) · (b− bc)2 +O((b− bc)3),

Σst(µ0, t0, b) = cmin(µ0, t0, L, d) · (b− bc)3 +O((b− bc)4).

For the proof of this theorem, we use determinant asymptotics from our companion paper

[35] to give the complexity as a variational problem over RLd . Using a remarkable MDE-induced

convexity property, we reduce this to a variational problem over R, namely (3.2.3). We analyze

this one-dimensional variational problem with a dynamic approach, varying B′′(0) for fixed µ0 and

t0.

We remark that Fyodorov and Le Doussal also exhibited a quadratic/cubic near-critical behavior

for this model but in a different scaling, varying µ0 for fixed B′′(0) and t0 [88].

3.2.2 Soft spins in an anisotropic well.We consider the random Hamiltonian HN : RN → R

given by

HN (x) = 〈x,DNx〉
2 + VN (x),

where DN is a real symmetric matrix satisfying conditions below, and where VN is an isotropic

centered Gaussian field with covariance

E[VN (x1)VN (x2)] = NB

(
‖x1 − x2‖2

2N

)
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with B : R+ → R+ a correlator function (meaning it has the representation (3.2.1)). As in Section

3.2.1, we assume that B is four times differentiable at zero to ensure twice-differentiability of the

field, and we assume

0 < |B(i)(0)| for i = 0, 1, 2,

for nondegeneracy of the field and its first two derivatives.

We suppose that (DN )∞N=1 is a sequence of real symmetric matrices, DN ∈ RN×N , and that

there exists some compactly supported measure µD such that, for some ε > 0, we have

dBL(µ̂DN , µD) 6 N−ε (3.2.6)

and the eigenvalues are uniformly gapped away from zero and from infinity, in that

ε 6 inf
N
λmin(DN ) 6 sup

N
λmax(DN ) 6 1

ε
.

Although our results are for the N → +∞ limit, Figure 1.3 displays how changing DN can

qualitatively change the count of critical points when N = 2.

History. Models of the form VN (x) + µ
2‖x‖

2 (recall (3.1.1)), with various choices of randomness,

have been considered in a wide variety of contexts. There are nice overviews of the literature in

[84, 94, 13]. In the early 1990s, the model was studied by Mézard-Parisi [123] and by Engel [73]

as a zero-dimensional case of the elastic manifold. The complexity was computed by Fyodorov [84]

for total critical points and Fyodorov-Williams [94] for minima, finding a phase transition between

positive and zero complexity at an explicit µc. Fyodorov and Nadal found that the complexity of

minima for µ near µc, scaled appropriately, tends to a limiting shape related to the Tracy-Widom

distribution [91].

There is also a long history of generalizing the model, as we do: Fyodorov and Williams actu-

ally studied the complexity after replacing the quadratic confinement µ
2‖x‖

2 with a general radial
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confinement NU(‖x‖
2

2N ) for some function U : R → R which is increasing and convex [94]. In some

sense our extension is orthogonal to theirs: they let the confinement be non-quadratic, whereas we

let it be non-radial. As another generalization, if VN (x) is not isotropic but merely has isotropic

increments (meaning E[(VN (x)− VN (y))2] depends only ‖x− y‖), then the model can admit long-

range correlations; this was studied in the physics literature by Fyodorov and co-authors [92, 85],

and its complexity was recently computed by Auffinger and Zeng [13].

Our generalization is reminiscent of the work of Fan, Mei, and Montanari on an upper bound

for the complexity of the TAP free energy of the Sherrington-Kirkpatrick model [78]. Indeed, via

the Kac-Rice formula, the random matrix that appears in our problem is a full-rank deformation

of GOE (see (3.5.3)). A similar random matrix, in fact with an additional low-rank deformation,

appears in [78].

Results. Let Crttot
N (HN ) be the total number of critical points of HN and Crtmin

N (HN ) be the total

number of local minima.

Definition 3.2.5. For any t > 0 and any µD compactly supported in (0,∞), define

Σtot(µD, t) = −
∫
R

log(λ)µD(dλ) + sup
u∈R

{∫
R

log|λ− u|(ρsc,t � µD)(λ) dλ− u2

2t

}
, (3.2.7)

Σmin(µD, t) = −
∫
R

log(λ)µD(dλ) + sup
u6l(ρsc,t�µD)

{∫
R

log|λ− u|(ρsc,t � µD)(λ) dλ− u2

2t

}
. (3.2.8)

We will show that these suprema are achieved, possibly not uniquely.

Theorem 3.2.6 below shows the relevance of these functions for complexity, and Theorem 3.2.8

analyzes the variational problems from (3.2.7) and (3.2.8) to describe the phase portrait in µD and

t. In particular, the regimes of positive complexity for the total number of critical points and local

minima coincide for any µD, and the exponents describing near-critical behavior are universal in

µD.
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Theorem 3.2.6. We have

lim
N→∞

1
N

logE[Crttot
N (HN )] = Σtot(µD, B′′(0)).

If in addition DN has no external outliers, in the sense that

lim
N→∞

λmin (DN ) = l(µD) and lim
N→∞

λmax (DN ) = r(µD),

then

lim sup
N→∞

1
N

logE[Crtmin
N (HN )] = Σmin (µD, B′′(0)).

Remark 3.2.7. We emphasize that Theorem 3.2.6 shows that special directions in the environment

(meaning outliers in DN ) have no effect on the total number of critical points at exponential scale,

as long as there are o(N) many of them. We leave open the effect of special directions on minima.

We define the important threshold

tc = tc(µD) =
(∫

R

µD(dλ)
λ2

)−1
. (3.2.9)

For t > tc, we write c = c(t, µD) for the unique positive value satisfying

1
t

=
∫
R

1
λ2 + t2c

µD(dλ)

and use this to define

v = v(t, µD) = −t
∫
R

λ

λ2 + t2c(t, µD) µD(dλ).

We also need the positive numbers

ctot(µD) =

(∫
R
µD(dλ)
λ2

)4

4
(∫

R
µD(dλ)
λ4

) , cmin(µD) =

(∫
R
µD(dλ)
λ2

)6

24
(∫

R
µD(dλ)
λ3

)2 . (3.2.10)
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Theorem 3.2.8. For every t > 0 and every probability measure µD compactly supported in (0,∞),

(i) if t 6 tc, then Σtot(µD, t) = Σmin(µD, t) = 0;

(ii) if t > tc, then Σtot(µD, t) > Σmin(µD, t) > 0, and these are given by

Σmin(µD, t) = −
∫
R

log(λ)µD(dλ) +
∫
R

log|λ− `|(ρsc,t � µD)(λ) dλ− `2

2t , (3.2.11)

Σtot(µD, t) = −
∫
R

log(λ)µD(dλ) +
∫
R

log|λ− v|(ρsc,t � µD)(λ) dλ− v2

2t , (3.2.12)

where ` = l(ρsc,t � µD) and v is as above; and

(iii) for supercritical t, we have

Σtot(µD, t) = ctot(µD) · (t− tc)2 +O((t− tc)3),

Σmin(µD, t) = cmin(µD) · (t− tc)3 +O((t− tc)4),

with ctot(µD), cmin(µD) as in (3.2.10).

The proof of this theorem relies on a dynamic approach, like for results in Section 3.2.1. We

also use two important inputs: (i) the Burgers’ equation satisfied by the Stieltjes transform of the

semicircle distribution, and (ii) an inequality from free probability, due to Guionnet and Maïda,

regarding the subordination function of the free convolution at the edge. We also need a new

result in free probability, possibly of independent interest, which we prove in Appendix B: The free

convolution of any measure with semicircle decays at least as fast as a square-root at its extremal

edges.

We remark that it is not obvious that the same threshold tc should work both for total critical

points and for local minima, and the analogue is false in closely related models. For example,

consider the Hamiltonian (3.1.1), i.e. HN (x) = µ
2‖x‖

2 + VN (x), but defined over {x ∈ RN : ‖x‖ 6

R
√
N} for some fixed R > 0 rather than over the whole space. Fyodorov, Sommers, and Williams

[93] showed that, for some choices of R, the complexity of total critical points is positive but
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the complexity of minima vanishes. (See [62] for related independent work.) But [94] proved the

analogue of point 1 for their model, discussed above, which is defined on the full space. See [94,

Section 2.4] for further discussion of the differences between the full-space models like ours with

“smooth confining potentials” and the “hard-wall confining potentials” of [93].

Example 3.2.9. The model (3.1.1) is a special case when DN = µ Id for some scalar µ > 0. In

our notation, this corresponds to µD = δµ. Theorem 3.2.6 yields

Σtot(δµ, B′′(0)) =



1
2

(
µ2

B′′(0) − 1
)
− log

(
µ√
B′′(0)

)
if µ 6 µc :=

√
B′′(0)

(equivalently, if
∫ µD(dt)

t2 > 1
B′′(0)),

0 if µ > µc,

Σmin(δµ, B′′(0)) =


1
2

[
−3− log

(
µ2

B′′(0)

)
+ 4 · µ√

B′′(0)
− µ2

B′′(0)

]
if µ 6 µc,

0 if µ > µc.

(3.2.13)

These recover results of [84, Equations (18-19)] and [94, Equation (81)], respectively. We also

recover their results on decay near criticality, as one can check by hand that the behavior predicted

by Theorem 3.2.8 (which gives ctot(δµ) = 1
4µ4 and cmin(δµ) = 1

24µ6 here) is correct.

Example 3.2.10. We give one more explicit example, namely when

µD(dx) = ρ(m,σ2)
sc (dx) =

√
(4σ2 − (x−m)2)+

2πσ2 dx

is the semicircle law of mean m and variance σ2. (Notice we need µD(dx) supported in (0,∞),
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equivalently m− 2σ > 0, for the model to be well-defined.) In this case we have

Σtot(µD, B′′(0)) =



m
4σ2

(
√
m2 − 4σ2 − m

1+2 σ2
B′′(0)

)
− log

(
m+
√
m2−4σ2

2
√
B′′(0)+σ2

)
if
∫ µD(dt)

t2 =
−1+ m√

m2−4σ2
2σ2 > 1

B′′(0) ,

0 if
∫ µD(dt)

t2 6 1
B′′(0) ,

Σmin(µD, B′′(0)) =



−1 + m(−m+
√
m2−4σ2)

4σ2 − m2+4σ2−4m
√
B′′(0)+σ2

2B′′(0) − log
(
m+
√
m2−4σ2

2
√
B′′(0)+σ2

)
if
∫ µD(dt)

t2 > 1
B′′(0) ,

0 if
∫ µD(dt)

t2 6 1
B′′(0) .

As a consistency check, in the limit σ ↓ 0 we obtain exactly the formulas (3.2.13) with µ replaced

by m.

3.3 Stability of the Matrix Dyson Equation

In this section, our goal is to give general results on the stability of the Matrix Dyson Equation.

For example, the MDE for GOE matrices is

Id +
(
z Id + 1

N
Tr(MN (z)) + 1

N
MN (z)T

)
MN (z) = 0, ImMN (z) > 0,

but 1
NMN (z)T should be thought of as an error, and it is more convenient to consider the unique

solution M ′N (z) to

Id +
(
z Id + 1

N
Tr(M ′N (z))

)
M ′N (z) = 0, ImM ′N (z) > 0.

In this section we prove stability of such MDEs to conclude 1
N TrMN (z) ≈ 1

N TrM ′N (z) for their

respective unique solutions. Similar arguments have appeared in papers of Erdős and collaborators,
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for example [6], but in more involved contexts where an exact deterministic solution of the MDE is

compared to a random near-solution with small (random) error. Since we are interested in slightly

different perturbations of the MDE, and only in the deterministic case, we adapt their arguments

to give a short self-contained proof here.

Fix a sequence (PN )∞N=1 of positive integers (typically we take PN = N or PN independent

of N). It is known [106] that, whenever S : CPN×PN → CPN×PN is a linear operator that is

self-adjoint with respect to the inner product 〈R, T 〉 = Tr(R∗T ) and that preserves the cone of

positive-semi-definite matrices, and whenever a(u) ∈ RPN×PN is symmetric, the problem

−M−1(u, z) = z Id−a(u) + S[M(u, z)] subject to ImM(u, z) > 0 (3.3.1)

has a unique solution M(u, z) ∈ CPN×PN for each z ∈ H and u ∈ Rm, and

‖M(u, z)‖ 6 1
η
. (3.3.2)

Fix two sequences (SN )∞N=1 and (S ′N )∞N=1 of such operators and two sequences (aN (u))∞N=1 and

(a′N (u))∞N=1 of such matrices (i.e., SN and S ′N act on CPN×PN , and aN (u), a′N (u) ∈ RPN×PN ), and

consider the associated solutions:

SN and aN (u) induce MN (u, z), S ′N and a′N (u) induce M ′N (u, z).

In this section, our goal is to show that MN and M ′N are close if SN and S ′N are close and aN (u)

and a′N (u) are close; we will use this to help identify µ∞ for both of our models.
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Lemma 3.3.1. Suppose that, for some κ > 0,

sup
N

max(‖aN (u)‖, ‖a′N (u)‖) 6 κmax(1, ‖u‖), (3.3.3)

‖S ′N‖hs→‖·‖ 6 κ, (3.3.4)

‖SN − S ′N‖‖·‖→‖·‖ 6
κ

N
, (3.3.5)

‖aN (u)− a′N (u)‖ 6 κmax(1, ‖u‖)
N

. (3.3.6)

If 0 < γ < 1
50 , then for each R and each A there exists δ > 0 with

sup
u∈BR

1
N

∫ A

−A

∣∣Tr(MN (u,E + iN−γ))− Tr(M ′N (u,E + iN−γ))
∣∣ dE 6 1

δ
N−δ.

Proof. Notice that MN (u, z) almost solves the MDE (3.3.1) with S = S ′N and a(u) = a′N (u); in

fact,

−MN (u, z)−1 = z Id−a′N (u) + S ′N [MN (u, z)] + (SN − S ′N )[MN (u, z)] + a′N (u)− aN (u)︸ ︷︷ ︸
=:dN (u,z)

,

and dN (u, z) is an error term in the sense that, if u ∈ BR (we take R > 1 without loss of generality),

from (3.3.2), (3.3.5), and (3.3.6) we have

‖dN (u, z)‖ 6 κ

Nη
+ κmax(1, ‖u‖)

N
6
κ(1 + ηR)

Nη
. (3.3.7)

We will apply standard stability theory of the MDE, which lets us conclude from this that MN

is close to M ′N . In fact, our goal is significantly easier than that in the literature, because our

approximate solution to the MDE is deterministic. In the generality we need, this theory has been
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developed in [6], and manipulations exactly like those preceding (4.25) there let us conclude

‖MN (u, z)−M ′N (u, z)‖

6 ‖L −1
N (u, z)‖‖M ′N (u, z)‖

(
‖dN (u, z)‖‖MN (u, z)‖+ ‖S ′N‖‖MN (u, z)−M ′N (u, z)‖2

)
.

(3.3.8)

Here LN (u, z) : CPN×PN → CPN×PN is the “stability operator”

LN (u, z)[T ] = T −M ′N (u, z)S ′N [T ]M ′N (u, z),

which is invertible for every u and every z by [6, Lemma 3.7(i)]. Inserting the estimates (3.3.2),

(3.3.4), and (3.3.7) into (3.3.8) yields

‖MN (u, z)−M ′N (u, z)‖ 6 κ

η
‖L −1

N (u, z)‖
(1 + ηR

Nη2 + ‖MN (u, z)−M ′N (u, z)‖2
)
. (3.3.9)

As usual, this quadratic inequality is fundamental to our strategy: We use it to show that ‖MN −

M ′N‖ is small for very large η, then fix E and decrease η with a continuity argument. To make this

bound useful, we import the following estimate on ‖L −1(u, z)‖ from [6, (3.23), (3.22), Convention

3.5] combined with (3.3.2): There exists a constant C such that, for all u and z, we have

‖L −1(u, z)‖ 6 C
(

1 + 1
η2 + ‖M

′
N (u, z)−1‖9

η13

)
. (3.3.10)

We use this estimate differently for η > 1 and η 6 1, which are the two steps in the remainder of

our argument.

Step 1 (η > 1): If u ∈ BR for some R (we take R > 1 without loss of generality), then taking

norms directly in the MDE (3.3.1) and applying (3.3.2) and (3.3.3) yields

‖M ′N (u, z)−1‖ 6 |z|+ ‖aN (u)‖+ ‖M ′N (u, z)‖ 6 |z|+ κR+ 1.

If η > 1, then |z| 6 η
√

1 + E2, so for any choice of Emax there exists a constant CR,Emax =
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CR,Emax ,κ1 such that

sup
|E|6Emax , η>1, u∈BR

‖M ′N (u, z)−1‖
η

6 CR,Emax .

Inserting this into (3.3.10) gives, for a new constant C̃R,Emax = C̃R,Emax ,κ1 ,

sup
|E|6Emax , η>1, u∈BR

‖L −1(u, z)‖ 6 C̃R,Emax . (3.3.11)

Now fix |E| 6 Emax , and consider the functions fN : (0,∞) → R and g±N : [1,∞) → R defined

by

fN (η) = fN,u(η) = ‖MN (u,E + iη)−M ′N (u,E + iη)‖,

g±N (η) = η

2κC̃R,Emax

1±

√
1− 4κ2(C̃R,Emax )2(1 + ηR)

Nη4

.
(The functions g±N (η) are well-defined if N > 4(C̃R,Emax )2(1+R).) The quadratic inequality (3.3.9)

with the estimate (3.3.11) inserted give, for all N > 4(C̃R,Emax )2 and all η > 1,

fN (η) ∈ [0, g−N (η)] ∪ [g+
N (η),∞).

If η > max
{

1,
√

4κC̃R,Emax

}
, then the crude bound (3.3.2) yields

fN (η) 6 η

2C̃R,Emax

< g+
N (η),

so that fN (η) 6 g−N (η). But since MN (u, z) and M ′N (u, z) are both holomorphic matrix-valued

functions of z [106], we know that fN (η) is a continuous function of η. Since g−N (η) < g+
N (η) for all

η > 1, we have fN (η) 6 g−N (η) down to η = 1. Notice that this is uniform in u ∈ BR.

Step 2 (η 6 1): Now we estimate

‖M ′N (u, z)−1‖ 6 |z|+ κR+ 1
η
6
C ′R,Emax

η
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for some C ′R,Emax = C ′R,Emax ,κ1
. Inserting this and (3.3.2) shows that, for some C ′′R,Emax =

C ′′R,Emax ,κ1
, we have

sup
|E|6Emax , η61, u∈BR

‖L −1(u, z)‖
η−22 6 C ′′R,Emax . (3.3.12)

Now fix |E| 6 Emax and consider the functions h±N : [N−1/50, 1]→ R defined by

h±N (η) = η23

2κC ′′R,Emax

1±

√
1−

4κ2(C ′′R,Emax
)2(1 + ηR)

Nη48

.
As above, the quadratic inequality (3.3.9) with the estimate (3.3.12) inserted give, for all N and

all η 6 1,

fN (η) ∈ [0, h−N (η)] ∪ [h+
N (η),∞).

But when η = 1 and N > 4κ2C ′′R,Emax C̃R,Emax (1 +R) we have (using 1−
√

1− x 6 x)

fN (1) 6 g−N (1) 6 2κC̃R,Emax (1 +R)
N

6
1

2κC ′′R,Emax

< h+
N (1),

so the same continuity argument as above gives

fN (η) 6 h−N (η) 6
2κC ′′R,Emax (1 +R)

Nη25 . (3.3.13)

Again, this is uniform over u ∈ BR and |E| 6 Emax .

To show the statement of the lemma, given R, 0 < γ < 1
50 , and A, we choose Emax = A above;

then applying (3.3.13) yields

sup
u∈BR

1
N

∫ A

−A

∣∣Tr(MN (u,E + iN−γ))− Tr(M ′N (u,E + iN−γ))
∣∣ dE 6 (4AκC ′′R,A(1 +R))N25γ−1.

This holds for N large enough depending on κ,R, and A.
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3.4 Elastic manifold

3.4.1 Establishing the variational formula. In this subsection we establish a variational

formula for complexity, given over RLd . In the next subsection we analyze this variational problem,

first by reducing it to a variational problem over R and then by relating it to the variational problem

we analyze in depth for the soft-spins model.

In this subsection, we frequently reference notation and results in the companion paper [35].

Let

J = 2
√
B′′(0)

which will be an important scaling factor. For each u ∈ RLd , define

a(u) = (−t0∆ + diag(u) + µ0 IdLd×Ld) ∈ RL
d×Ld , (3.4.1)

and for each z ∈ H let m∞(u, z) = (m∞(u, z)1, . . . ,m∞(u, z)Ld) ∈ CLd be the unique solution to

m∞(u, z) = diag[(a(u)− J2m∞(u, z)− z Id)−1] such that Imm∞(u, z) > 0 componentwise.

(3.4.2)

(Recall we identify vectors with diagonal matrices; we will prove existence and uniqueness during

the proof using the methods of Erdős and co-authors.) Let µ∞(u) (which also depends on L, d, t0,

and µ0) be the measure whose Stieltjes transform is given by

∫
µ∞(u,ds)
s− z

= 1
Ld

Ld∑
i=1

m∞(u, z)i.

Theorem 3.4.1. The probability measure µ∞(u) admits a bounded, compactly supported density
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µ∞(u, ·) with respect to Lebesgue measure, and

Σ(µ0) = Σ(µ0, L, d, t0) := lim
N→∞

1
NLd

logE[Ntot]

= − 1
Ld

log(det(µ0 Id−t0∆)) + sup
u∈RLd

{∫
log|·|dµ∞(u, ·)− ‖u‖

2

2J2Ld

}
.

(3.4.3)

Furthermore, if we define the set

G = {u ∈ RL
d : µ∞(u)((−∞, 0)) = 0} (3.4.4)

of u values whose corresponding measures µ∞(u) are supported in the right half-line, we have

Σst(µ0) = Σ(µ,L, d, t0) := lim sup
N→∞

1
NLd

logE[Nst]

= − 1
Ld

log(det(µ0 Id−t0∆)) + sup
u∈G

{∫
log|·|dµ∞(u, ·)− ‖u‖

2

2J2Ld

}
.

(3.4.5)

The suprema in (3.4.3) and (3.4.5) are achieved (possibly not uniquely).

We first build the relevant block matrix. With a(u) as in (3.4.1), let

AN (u) = a(u)⊗ IdN×N .

For each N , let (Xi)L
d

i=1 be a collection of Ld independent N × N matrices, each distributed as J

times a GOE matrix, with the normalization E[((Xi)jk)2] = J2 1+δjk
N . Let

WN =
Ld∑
i=1

Eii ⊗Xi,

HN (u) = AN (u) +WN .

This matrix is in the class of “block-diagonal Gaussian matrices” studied in [35, Corollary 1.9]. It

appears naturally in the Kac-Rice formula, but we also introduce a slight modification that is easier
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to work with. Let

W̃N =
(

1− 1√
2

Id
)
�WN ,

H̃N (u) = AN (u) + W̃N ,

where 1 is the matrix of all ones and � is the entrywise product, i.e., W̃N is just WN rescaled to

make the variances J2/N both on and off the diagonal, coupled appropriately with WN .

Now we simplify the MDE. It is known [106] that, whenever S : CLd×Ld → CLd×Ld is a linear

operator that is self-adjoint with respect to the inner product 〈R, T 〉 = Tr(R∗T ) and that preserves

the cone of positive-semi-definite matrices, the problem

−M−1(u, z) = z Id−a(u) + S[M(u, z)] subject to ImM(u, z) > 0 (3.4.6)

has a unique solutionM(u, z) ∈ CLd×Ld for each z ∈ H and u ∈ RLd . We will consider this problem

with two choices of operator S:

SN [T ] = J2N + 1
N

diag(T ) induces MN (u, z),

S∞[T ] = J2 diag(T ) induces M∞(u, z).

Write Si (respectively, S̃i) for the “stability operators” of [35, (1.15)] corresponding to the matrix

HN (u) (respectively, H̃N (u)). Then we can compute

Si[r] = J2
N∑
k=1

1 + δik
N

diag(rk), S̃i[r] = J2

N

N∑
k=1

diag(rk).

Thus the choices m(u, z) = (MN (u, z), . . . ,MN (u, z)) and m̃(u, z) = (M∞(u, z), . . . ,M∞(u, z))

exhibit solutions to the block MDE [35, (1.16)] for the matrices HN (u) and H̃N (u), respectively.
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That is, the measure µN (u) that appears in the local laws for HN (u) has Stieltjes transform

∫
µN (u,ds)
s− z

= 1
Ld

Tr(MN (u, z)),

and the measure that appears in the local laws for H̃N (u) is actually independent of N : We call it

µ∞(u), and its Stieltjes transform is given by

∫
µ∞(u,ds)
s− z

= 1
Ld

Tr(M∞(u, z)).

Lemma 3.4.2. Both µN (u) and µ∞(u) admit densities µN (u, ·) and µ∞(u, ·) with respect to

Lebesgue measure, and

sup
u∈Rm,z∈H,N∈N

max{‖MN (u, z)‖, ‖M∞(u, z)‖, ‖µN (u, ·)‖L∞ , ‖µ∞(u, ·)‖L∞} 6
√
Ld/J.

Proof. The following arguments are due to László Erdős and Torben Krüger. We prove the result

for MN and µN ; the proofs for M∞ and µ∞ are similar. By taking the imaginary part of (3.4.6)

and multiplying on the left by MN (u, z)∗ and on the right by MN (u, z), then taking the diagonal

of both sides, we obtain

Im diag(MN (u, z)) = diag
(
MN (u, z)∗

(
η + J2N + 1

N
Im(diag(MN (u, z)))

)
MN (u, z)

)
= FN (u, z)

(
η + J2N + 1

N
Im(diag(MN (u, z)))

)
,

(3.4.7)

where FN (u, z) ∈ RLd×Ld is given elementwise by FN (u, z)ij = |(MN (u, z))ij |2. By transposing the

MDE (3.4.6) and using the fact that a(u) is symmetric, we see that MN (u, z) is symmetric (but

not Hermitian) as well. Hence FN (u, z) is a real symmetric matrix with nonnegative entries. The

inner product of (3.4.7) with the Perron-Frobenius eigenvector of FN then gives ‖FN‖ 6 1
J2

N
N+1 ,
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since Im(diag(MN (u, z)) has all positive components. Thus

‖MN (u, z)‖2 6 Tr(MN (u, z)∗MN (u, z)) = 〈1, FN (u, z)1〉 6 1
J2

N

N + 1L
d.

Now for any interval [a, b] we have

µN (u)([a, b]) + µN (u)({a}) + µN (u)({b})
2 = lim

η↓0

1
π

∫ b

a
Im 1

Ld
Tr(MN (u,E + iη)) dE 6 (b− a)

√
Ld

Jπ
.

By standard continuity arguments we extend this to µN (u)(A) 6 |A|
√
Ld

Jπ for any Borel set A; this

implies that µN is absolutely continuous with respect to Lebesgue measure with a density that is

pointwise bounded by
√
Ld

Jπ .

Lemma 3.4.3. For every R, there exists ε > 0 such that

sup
u∈BR

W1(E[µ̂HN (u)], µ∞(u)) 6 N−ε. (3.4.8)

Proof. First, note that

sup
N
‖AN (u)‖ = ‖a(u)⊗ Id ‖ = ‖a(u)‖ 6 t‖∆‖+ ‖u‖+ µ <∞. (3.4.9)

Along with Lemma 3.4.2, this verifies the assumptions of [35, Corollary 1.9], the proof of which

shows that (3.4.8) holds with µ∞(u) replaced by µN (u) (the result is locally uniform in u since all

the assumptions are). To compare µN (u) and µ∞(u), we use the result of Lemma 3.3.1 (with the

choices PN ≡ Ld, S ′N = S∞ as above) and follow the proof of [35, Proposition 3.1].

Lemma 3.4.4. There exists C > 0 with

E[|det(HN (u))|] 6 (C max(‖u‖, 1))N .
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Proof. Deterministically,

|det(HN (u))| 6 ‖HN (u)‖N 6 (‖WN‖+ ‖AN (u)‖)N 6 (2‖WN‖)N + (2‖AN (u)‖)N .

In the proof of [35, Corollary 1.9], we showed P(‖WN‖ > t) 6 e−cN max(0,t−C) for some constants

c, C, which implies E[‖WN‖N ] 6 eCN . With the estimate on ‖AN (u)‖ from (3.4.9), this suffices.

Lemma 3.4.5. For every R and every ε > 0, we have

lim
N→∞

1
N logN log

[
sup
u∈BR

P(dBL(µ̂HN (u), µ∞(u)) > ε)
]

= −∞.

Proof. The laws of the entries of
√
NHN (u) satisfy the log-Sobolev inequality with a uniform

constant, since they are Gaussians. (If they are degenerate, we recall that a delta mass satisfies

log-Sobolev with any constant.) This is true uniformly over u ∈ RLd , since u only affects the mean,

and translating measures preserves log-Sobolev with the same constant. Hence [103, Theorem 1.5]

give, for some constants C1 and C2,

sup
u∈RLd

P(dBL(µ̂HN (u),E[µ̂HN (u)]) > ε) 6 C1
ε3/2 exp

(
− C2

2LdN
2ε5
)
.

To relate E[µ̂HN (u)] to µ∞(u), we use Lemma 3.4.3.

Lemma 3.4.6. For every ε > 0 and R > 0, we have

lim
N→∞

inf
u∈BR

P(Spec(HN (u)) ⊂ [l(µ∞(u))− ε, r(µ∞(u)) + ε]) = 1. (3.4.10)

and in fact the extreme eigenvalues of HN (u) converge in probability to the endpoints of µ∞(u).

Proof. The local law [6, Theorem 2.4, Remark 2.5(v)] tells us that, for every ε and R, there exists

Cε,R such that

inf
u∈BR

P
(

Spec(H̃N (u)) ⊂
[
l(µ∞(u))− ε

2 , r(µ∞(u)) + ε

2

])
> 1− Cε,R

N100 . (3.4.11)
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(We can take the infimum over u ∈ BR because the local-law estimates are uniform over all models

possessing the same “model parameters,” see the remarks just before Theorem 2.4 there. Our

model parameters depend on u but can be taken uniformly over u ∈ BR, for example because

supu∈BR ‖AN (u)‖ <∞.)

Notice that

∆N = HN (u)− H̃N (u) = WN − W̃N

is a diagonal matrix with independent Gaussian entries of variance J2/N that does not depend on

u. Thus

sup
u∈RLd

P
(∣∣∣∣λmin (HN (u))− λmin (H̃N (u))

∣∣∣∣ > ε

2

)
6 P

(
‖∆N‖ >

ε

2

)
6

2J
√
NLd

ε
e−Nε

2/(8J2) (3.4.12)

and similarly for λmin . Since

P(λmax (HN (u)) > r(µ∞(u)) + ε)

6 P
(
λmax (H̃N (u)) > r(µ∞(u)) + ε

2

)
+ P

(∣∣∣∣λmax (HN (u))− λmax (H̃N (u))
∣∣∣∣ > ε

2

)
,

and similarly for λmin , (3.4.11) and (3.4.12) imply (3.4.10).

For the other inequality, namely that lim infN→∞ λmax (HN (u)) > r(µ∞(u)) in probability, we

note that µ̂HN (u) concentrates about µ∞(u) in the sense of Lemma 3.4.5. The smallest eigenvalue

is handled similarly.

Lemma 3.4.7. With G+ε as defined in [35, (4.5)] and G as defined in (3.4.4), we have that each

G+ε is convex, that G+1 has positive measure, and that

⋃
ε>0
G+ε = G.

Proof. Whenever u, v ∈ RLd and t ∈ [0, 1], one can checkHN (tu+(1−t)v) = tHN (u)+(1−t)HN (v);
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thus

λmin (HN (tu+ (1− t)v)) > tλmin (HN (u)) + (1− t)λmin (HN (v))

almost surely, and by letting N →∞ and applying the convergence in probability of Lemma 3.4.6

we obtain l(µ∞(tu+ (1− t)v)) > tl(µ∞(u)) + (1− t)l(µ∞(v)). Hence each G+ε is convex.

Since −t∆ and µ Id are positive semidefinite,

λmin (AN (u)) = λmin (a(u)⊗ Id) = λmin (a(u)) = λmin (−t∆ + diag(u) + µ Id) > min(u1, . . . , uLd).

On the other hand,

λmin (WN ) = λmin

 Ld∑
i=1

Eii ⊗Xi

 =
Ld

min
i=1

(λmin (Xi))

which tends almost surely to −2J in our normalization. Thus

lim inf
N→∞

λmin (HN (u)) > min(u1, . . . , uLd)− 2J.

which, combined with the convergence in probability of Lemma 3.4.6, shows that G+1 has positive

measure.

Finally, we note that the inclusion ∪ε>0G+ε ⊂ G is clear, and that G is closed by [35, Lemma

4.6]. To show the reverse inclusion, write ~1 ∈ RLd for the vector of all ones; then it is easy to

check HN (u + δ~1) = HN (u) + δ Id, so by the convergence in probability of Lemma 3.4.6 we have

l(µ∞(u+ δ~1)) = l(µ∞(u)) + δ. This completes the proof.

Proposition 3.4.8. We have

lim
N→∞

1
NLd

log
∫
RLd

e−N
‖u‖2

2J2 E[|det(HN (u))|] du = sup
u∈RLd

{∫
log|λ|µ∞(u, λ) dλ− ‖u‖

2

2J2Ld

}
(3.4.13)
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and

lim sup
N→∞

1
NLd

log
∫
RLd

e−N
‖u‖2

2J2 E[|det(HN (u))|1HN (u)>0] du = sup
u∈G

{∫
log|λ|µ∞(u, λ) dλ− ‖u‖

2

2J2Ld

}
(3.4.14)

where G is defined in (3.4.4).

Proof. For (3.4.13), we apply [35, Theorem 4.1] with α = 1
2J2Ld

, p = 0, and D = RLd . (Technically,

we are applying this theorem with N there replaced by NLd here, which is the size of HN ; this

is why α is 1
2J2Ld

and not 1
2J2 .) We checked the conditions of this theorem in [35, Corollary 1.9]

and Lemmas 3.4.3 and 3.4.4. (All the results are locally uniform in u because all the parameters

of the random matrices are.) For (3.4.14), we apply [35, Theorem 4.5] with α = 1
2J2Ld

, p = 0, and

D = RLd . We checked the conditions for this result in Lemmas 3.4.5, 3.4.6, and 3.4.7.

Proof of Theorem 3.4.1. Kac-Rice computations in [88] show, exactly for finite N ,

1
NLd

logE[Ntot] = − 1
Ld

log(det(u0 − t0∆)) + 1
NLd

log
∫
RLd

e−N
‖u‖2

2J2

(
√

2πJ2/N)Ld
E[|det(HN (u))|] du,

1
NLd

logE[Nst] = − 1
Ld

log(det(u0 − t0∆))

+ 1
NLd

log
∫
RLd

e−N
‖u‖2

2J2

(
√

2πJ2/N)Ld
E[|det(HN (u))|1HN (u)>0] du,

where HN (u) is as above. Then we apply the above Proposition.

3.4.2 Analyzing the variational formula. The following concavity property is the key reason

the complexity thresholds can be calculated explicitly, from the variational formulas appearing in

the previous section.

Proposition 3.4.9. The function

S[u] =
∫
R

log|λ|µ∞(u, λ) dλ− ‖u‖
2

2J2Ld
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is concave.

Proof. We assume d = 1 below, the general case requiring only notational change of L into Ld. The

MDE for our problem, namely (3.4.6) with the choice S[T ] = J2 diag(T ), has a matrix solution

M(u, z) = M∞(u, z) (we now drop the ∞ to save notation). The problem can be reduced to a

vector MDE for ~m(u, z) = diag(M(u, z)) =: (m1(u, z), . . . ,mL(u, z)) by taking the diagonal of both

sides of (3.4.6). (In fact, M(u, z) can be reconstructed from knowledge of ~m(u, z) via (3.4.6).) The

diagonal MDE takes the form

− diag(m1, . . . ,mL) = diag[(z − µ+ t∆− diag(u1, . . . , uL) + J2 diag(m1, . . . ,mL))−1]. (3.4.15)

We denote ∂k = ∂uk , and write m = 1
L

∑L
1 mi for the Stieltjes transform of µ∞. The first essential

observation is
d

duk
(−Lm) = d

dzmk. (3.4.16)

Indeed, for any invertible matrix B, we have

(B−1)kk = Tr(B−1|ek〉〈ek|) = ∂u=0 log det(Id +uB−1|ek〉〈ek|) = ∂u=0 log det(B + u|ek〉〈ek|),

so that, denoting B(z, u, ~m) = z − µ+ t∆− diag(u1, . . . , uL) + J2 diag(m1, . . . ,mL), we have

d
duk

log detB = ∂k log detB + J2∑
j

∂mj log detB · ∂kmj = mk − J2∑
j

mj∂kmj ,

d
dz log detB = ∂z log detB + J2∑

j

∂mj log detB · ∂zmj = −Lm− J2∑
j

mj∂zmj ,

i.e.

mk = d
duk

(log detB + J2

2
∑
j

m2
j ),

−Lm = d
dz (log detB + J2

2
∑
j

m2
j ).
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We conclude that d
duk (−Lm) = d

dzmk.

With (3.4.16), we obtain

∂k

∫
log|λ|µ∞(u, λ) = 1

πL

∫
log|λ|∂λ Immk(λ+ i0+)

= − 1
πL

∫ 1
λ

Immk(λ+ i0+) = − 1
L

Remk(i0+).
(3.4.17)

Now, from (3.4.15), we obtain

∂k(m1, . . . ,mL) = M(Ek + J2 diag(∂km1, . . . , ∂kmL))M = R(J2∂k(m1, . . . ,mL) + ek)T

where the matrix Ek (respectively, the vector ek) is 0’s except 1 at position (k, k) (respectively,

position k), and where R = R(u, z) is the linear operator defined by (Rv)i =
∑

(Mij)2vj , with

M = M(u, z) the MDE solution matrix. Thus we have

(1− J2R)(∂k ~m) = R(ek)T ,

from which

∂k ~m = 1
J2 (1− J2R)−1(J2R− 1 + 1)(ek)T = 1

J2 (− Id +(1− J2R)−1)(ek)T .

Taking the jth component of both sides, we get the scalar equation

∂kmj = 1
J2 (− Id +(1− J2R)−1)jk.

Together with (3.4.17), this gives

∇2
u

∫
log|λ− µ|µ∞(u, λ) = 1

J2L
(Id−Re[(1− J2R)−1]). (3.4.18)

Lemma 3.4.10 below, due to László Erdős and Torben Krüger, shows that Re[(1−J2R)−1] > 0 in the
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sense of quadratic forms. Along with (3.4.18), this gives concavity of
∫
R log|λ|µ∞(u, λ) dλ− ‖u‖2

2J2Ld

in u.

Lemma 3.4.10. For each u ∈ RLd and each z ∈ H, let R(u, z) ∈ CLd×Ld be defined elementwise

by

R(u, z)jk = (M(u, z)jk)2 =: eiθ(u,z)jk |M(u, z)jk|2,

where M(u, z) = M∞(u, z). Then for every u ∈ RLd, every z ∈ H, and every nonzero vector v we

have

Re
〈
v, (Id−J2R(u, z))v

〉
> 0.

In particular, for any w, written as (1− J2R)v, we have

Re〈w, (1− J2R)−1w〉 = Re〈(1− J2R)v, v〉 > 0.

Proof. Consider the matrix F (u, z) ∈ RLd×Ld defined elementwise by F (u, z)jk = |M(u, z)jk|2.

The proof of Lemma 3.4.2 shows that sup
u∈RLd ,z∈H ‖F (u, z)‖ 6 1

J2 . Given v ∈ CLd , write |v| =

(|v1|, . . . , |vLd |); then

Re
〈
v, (Id−J2R(u, z))v

〉
> Re

Ld∑
j=1

(
1− J2|M(u, z)jj |2eiθ(ξ,z)jj

)
|vj |2 − J2 ∑

j 6=k
|M(u, z)jk|2|vjvk|

=
Ld∑
j=1

(
1− J2|M(u, z)jj |2 cos(θ(u, z)jj)

)
|vj |2 − J2 ∑

j 6=k
|M(u, z)jk|2|vjvk|

=
〈
|v|,

(
Id−J2F (u, z)

)
|v|
〉

+ J2
Ld∑
j=1

(1− cos(θ(u, z)jj))|M(u, z)jj |2|vj |2

>
〈
|v|,

(
Id−J2F (u, z)

)
|v|
〉

+ J2
Ld∑
j=1

2(Im(M(u, z)jj))2|vj |2.
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The first term is nonnegative since ‖F (u, z)‖ 6 1
J2 , so we have

Re
〈
v, (Id−J2R(u, z))v

〉
> 2J2

(
Ld

min
j=1

Im(M(u, z)jj)
)2

‖v‖2.

But Im(M(u, z)jj) is the (j, j) entry of the matrix ImM(u, z), which is (strictly) positive definite

by the definition of the MDE.

Proposition 3.4.11. S is maximized on the diagonal of Rd, i.e.,

sup
u∈RLd

S[u] = sup
u∈R
S[(u, . . . , u)].

Proof. It suffices to show that the set of maximizers

M =
{
u ∈ RL

d : S[u] = sup
v∈RLd

S[v]
}

intersects the diagonal. First, M is nonempty, since (by [35, Lemma 4.4]) S is continuous with

lim‖u‖→+∞ S[u] = −∞. Furthermore, M is closed under the operation “permute the coordinates

(which are indexed by lattice points) with a permutation that is also a translation of the periodic

lattice,” since such permutations preserve a(u) in (3.4.1) and thus µ∞(u). Finally, M is convex,

since S[u] is concave.

Given u ∈ M, its images under all possible lattice translations are thus all in M, so the

average of all these points (which is in their convex hull) is inM. Since the lattice is periodic (i.e.,

translations are in bijection with lattice sites), this average is on the diagonal.

Proof of Theorem 3.2.2. Using Proposition 3.4.11 to restrict the variational problem from Theorem

3.4.1 to the diagonal, we have

Σ(µ0) = − 1
Ld

log(det(µ0 IdLd×Ld −t0∆)) + sup
u∈R

{∫
R

log|λ|µ∞((u, . . . , u), λ) dλ− u2

2J2

}
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and similarly for minima. One can check directly from the MDE that

µ∞((u, . . . , u), λ) = µ∞((0, . . . , 0), λ− u),

and in fact we have µ∞((0, . . . , 0)) = ρsc,J2 � µ̂−t0∆+µ0 Id. Indeed, by symmetry all the entries

of m∞(0, z) must be equal. If we denote by m(z) their shared value (which is also the Stieltjes

transform of µ∞((0, . . . , 0))), then by taking the normalized trace in (3.4.2) we find that m(z)

satisfies the self-consistent equation

m(z) =
∫
µ̂−t0∆+µ0 Id(ds)
s− z − J2m(z) .

This Pastur relation characterizes [131] the Stieltjes transform m(z) of ρsc,J2 � µ̂−t0∆+µ0 Id. Ex-

changing u and −u gives (3.2.4).

Proof of Theorem 3.2.4. Since −L−d log det(µ0 − t0∆) = −
∫

log(λ)µ̂−t0∆+µ0 Id, the variational

problems given in (3.2.3) and (3.2.4) are exactly the variational problems analyzed for the soft

spins model in (3.2.7) and (3.2.8), identifying µD there with µ̂−t0∆+µ0 Id here (which is gapped

from zero since µ0 > 0) and B′′(0) there with J2 here. The statement of Theorem 3.2.4 follows

from our analysis of that variational problem in the next section, since

∫
R

µ̂−t0∆+µ0 Id(dλ)
λ2 =

∫
R

µ̂−t0∆(dλ)
(λ+ µ0)2

is a strictly decreasing function of µ0, tending to 0 as µ0 → +∞ and tending to +∞ (since the

Laplacian is singular) as µ0 ↓ 0. This proves existence and uniqueness of the Larkin mass as

claimed.

Remark 3.4.12. Here we take ∆ to be the lattice Laplacian, which is the classic choice in the elastic

manifold, but as suggested in [89] the same methods and proofs allow us to replace ∆ everywhere

with any symmetric negative semidefinite Ld×Ld matrix. For example, this allows for interactions
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beyond pairwise.

3.5 Soft spins in an anisotropic well

3.5.1 Establishing the variational formula. In this subsection we prove Theorem 3.2.6,

which establishes a variational formula for complexity. In the next subsection we analyze it to

prove Theorem 3.2.8.

The Kac-Rice formula [2, Theorem 11.2.1] gives

E[Crttot
N (H)] =

∫
RN

E[
∣∣∣det(∇2H(σ))

∣∣∣ | ∇H(σ) = 0]φσ(0) dσ,

E[Crtmin
N (H)] =

∫
RN

E[
∣∣∣det(∇2H(σ))

∣∣∣1∇2H(σ)>0 | ∇H(σ) = 0]φσ(0) dσ,
(3.5.1)

where

φσ(0) = 1
(2πB′(0))N/2

exp
(
− 1

2B′(0)‖DNσ‖2
)

is the density of ∇H(σ) at 0 ∈ RN . (As stated, the Kac-Rice formula actually counts the mean

number of critical points, not in all of RN , but in a compact subset T of RN satisfying some

regularity assumptions; then the right-hand integrals in (3.5.1) are over T instead of RN . To

obtain (3.5.1) as written, we use this version of Kac-Rice for some nested sequence (TN )∞N=1 of

compact sets whose union is RN and apply monotone convergence on both sides.)

Since V is isotropic, for each σ we have that (∇2V (σ), V (σ)) is independent of ∇V (σ); hence

for each σ we also have that (∇2H(σ),H(σ)) is independent of ∇H(σ). In fact, since V is isotropic

the distribution of ∇2V (σ) is independent of σ; and by computation

∇2 1
2〈σ,DNσ〉 = DN
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is independent of σ as well. Thus

E[Crttot
N (H)] =

∫
RN

E[
∣∣∣det(∇2H(σ))

∣∣∣ | ∇H(σ) = 0]φσ(0) dσ = E
[∣∣∣det(∇2H(0))

∣∣∣] ∫
RN

φσ(0) dσ

= 1
det(DN )E

[∣∣∣det(∇2H(0))
∣∣∣],

E[Crtmin
N (H)] = 1

det(DN )E
[∣∣∣det(∇2H(0))

∣∣∣1∇2H(0)>0
]
.

(3.5.2)

Since the eigenvalues of DN are gapped away from zero and from infinity, uniformly in N , we have

lim
N→∞

1
N

log
( 1

det(DN )

)
= −

∫
log(λ)µD(dλ).

Thus it remains only to study the Hessian.

Classical Gaussian computations (e.g., [2, Section 5.5]) yield

∇2H(0) (d)= WN + ξ Id +DN ,

where WN is distributed according to
√
B′′(0) times the GOE and ξ ∼ N (0, B′′(0)/N) is inde-

pendent of WN . In fact, since the law of WN + ξ Id is invariant under conjugation by orthogonal

matrices, we can assume without loss of generality that DN is diagonal. If we define

AN (u) = u Id +DN

and HN (u) = WN +AN (u), then we have

E
[∣∣∣det(∇2H(0))

∣∣∣] = 1√
2π/N

∫
R
e
−N u2

2B′′(0)E[|det(HN (u))|] du,

E
[∣∣∣det(∇2H(0))

∣∣∣1∇2H(0)>0
]

= 1√
2π/N

∫
R
e
−N u2

2B′′(0)E[|det(HN (u))|1HN (u)>0] du.
(3.5.3)

Now we study the relevant MDE. Given a linear operator S : CN×N → CN×N that is self-adjoint
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with respect to the inner product 〈R, T 〉 = Tr(R∗T ) and that preserves the cone of positive-semi-

definite matrices, the problem

−M−1(u, z) = z Id−AN (u) + S[M(u, z)] subject to ImM(u, z) > 0 (3.5.4)

has a unique solution M(u, z) ∈ CN×N for each z ∈ H and u ∈ R. We will consider this problem

with two choices of operator S:

SN [T ] = B′′(0)
N

Tr(T ) +B′′(0)T
tr

N
induces MN (u, z),

S ′N [T ] = B′′(0)
N

Tr(T ) induces M ′N (u, z).

Let µN (u) and µ′N (u) be the probability measures whose Stieltjes transforms are, respectively,
1
N Tr(MN (u, z)) and 1

N Tr(M ′N (u, z)). Recall the notation ρsc,t for the semicircle law of variance t.

Lemma 3.5.1. We recognize

µ′N (u) = ρsc,B′′(0) � µ̂AN (u).

Proof. Write m′N (u, z) for the Stieltjes transform of ρsc,B′′(0) � µ̂AN (u). The Pastur relation [131],

which characterizes the Stieltjes transform of the free convolution of the semicircle law with another

measure, states that m′N (u, z) satisfies the self-consistent equation

m′N (u, z) =
∫ (µ̂DN+u Id)(dλ)
λ− z −B′′(0)m′N (u, z) = 1

N

N∑
i=1

1
(DN )ii + u− z −B′′(0)m′N (u, z) .

(Recall we changed variables so that DN is diagonal.) If we define

M′N (u, z) = diag
(

1
(DN )11 + u− z −B′′(0)m′N (u, z) , . . . ,

1
(DN )NN + u− z −B′′(0)m′N (u, z)

)
,

this Pastur relation then gives m′N (u, z) = 1
N Tr(M′N (u, z)), which means thatM′N (u, z) exhibits a

solution to the MDE (3.5.4) with S = S ′N . (Since Imm′N (u, z) > 0 when z ∈ H, one can check that

ImM′N (u, z) > 0.) Thus m′N (u, z), which we defined as the Stieltjes transform of ρsc,B′′(0)� µ̂AN (u),
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is also the Stieltjes transform of µ′N (u).

Let τu be the translation τu(x) = x+ u, and write (τu)∗µ for the pushforward of a probability

measure µ under τu (i.e., the translation of µ by u).

Lemma 3.5.2. The measures µ′N (u) and

µ∞(u) = ρsc,B′′(0) � ((τu)∗µD)

admit bounded and compactly supported densities on R, locally uniformly in u (meaning the bound

and the compact set can be taken uniform on compact sets of u).

Proof. These are standard consequences of the regularity of free convolution with the semicircle

law, studied in depth by [49]. For a compactly supported measure µ and t > 0, we have [49,

Corollaries 2, 5] that ρsc,t � µ admits a density (ρsc,t � µ)(·) with

(ρsc,t � µ)(x) 6
( 3

4π3t2
(4 + |r(µ)− l(µ)|)

)1/3
1l(µ)−2

√
t6x6r(µ)+2

√
t.

To study µ′N (u), we apply this with µ = µ̂AN (u). Since r(µ̂AN (u)) 6 u + supN λmax (DN ) and

l(µ̂AN (u)) > u, both of which are uniformly bounded over u ∈ BR, we obtain the claim for µ′N (u).

The proof for µ∞(u) is similar.

Proposition 3.5.3. We have

lim
N→∞

1
N

log
∫
R
e
− Nu2

2B′′(0)E[|det(HN (u))|] du

= sup
u∈R

{∫
R

log|λ− u|d(ρsc,B′′(0) � µD)(λ)− u2

2B′′(0)

}
,

(3.5.5)

lim
N→∞

1
N

log
∫
R
e
− Nu2

2B′′(0)E[|det(HN (u))|1HN (u)>0] du

= sup
u6l(ρsc,B′′(0)�µD)

{∫
R

log|λ− u|d(ρsc,B′′(0) � µD)(λ)− u2

2B′′(0)

}
.

(3.5.6)
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Proof. For (3.5.5), we wish to apply [35, Theorem 4.1] with α = 1
2B′′(0) , p = 0, D = R, and µ∞(u) as

above. To do this, we will consider HN (u) as a sequence of “Gaussian matrices with a (co)variance

profile,” in the language of [35, Corollary 1.8.A]. So we verify the assumptions of that corollary.

By assumption we have supN λmax (DN ) <∞; thus

sup
N
‖AN (u)‖ 6 |u|+ sup

N
λmax (DN ) <∞.

Since WN is
√
B′′(0) times a GOE matrix, the proof of Lemma 3.4.4 gives us E[|det(HN (u))|] 6

(C max(‖u‖, 1))N for some C. For the same reason, we can compute directly

E[WNTWN ] = B′′(0)
N

Tr(T ) Id +B′′(0)
N

T

which verifies the flatness condition. Since everything is locally uniform in u, it remains only to

show

W1(µN (u), µ∞(u)) 6 N−κ (3.5.7)

for some κ > 0. Since all of these measures are compactly supported, locally uniformly in u, the

Wasserstein-1 and bounded-Lipschitz distances are equivalent, so we will work with dBL.

First we relate µN to µ′N , using Lemma 3.3.1 (with PN = N) to estimate the difference between

their Stieltjes transforms and then following the proof of [35, Proposition 3.1], using the regularity

we established in Lemma 3.5.2. To relate µ′N and µ∞, we write dL for the Lévy distance between

probability measures, then combine the translation-invariance of bounded-Lipschitz distance, [71,

Corollary 11.6.5, Theorem 11.3.3], and [48, Proposition 4.13] to obtain

dBL(µ′N (u), µ∞(u)) = dBL(ρsc,B′′(0) � µ̂AN (u), ρsc,B′′(0) � ((τu)∗µD))

= dBL((τu)∗(ρsc,B′′(0) � µ̂DN ), (τu)∗(ρsc,B′′(0) � µD))

= dBL(ρsc,B′′(0) � µ̂DN , ρsc,B′′(0) � µD) 6 2dL(ρsc,B′′(0) � µ̂DN , ρsc,B′′(0) � µD)

6 2dL(µ̂DN , µD) 6 4
√
dBL(µ̂DN , µD) 6 N−ε,
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uniformly over u ∈ R, where the last inequality is by assumption (3.2.6). This verifies (3.5.7), and

thus [35, Theorem 4.1] yields

lim
N→∞

1
N

log
∫
R
e
−N u2

2B′′(0)E[|det(HN (u))|] du = sup
u∈R

{∫
R

log|λ|µ∞(u, λ) dλ− u2

2B′′(0)

}
.

To obtain (3.5.5), we notice that

µ∞(u, λ) = (ρsc,B′′(0)�((τu)∗µD))(λ) = ((τu)∗(ρsc,B′′(0)�µD))(λ) = (ρsc,B′′(0)�µD)(λ−u) (3.5.8)

and change variables twice (exchanging u and −u). This completes the proof of (3.5.5).

For (3.5.6), we wish to apply [35, Theorem 4.5] with α = 1
2B′′(0) , p = 0, D = R, and µ∞(u) as

above. Now we verify its conditions. Arguments as in the elastic-manifold case, specifically Lemma

3.4.5, give [35, (4.6)]. By (3.5.8), P(Spec(HN (u)) ⊂ [l(µ∞(u)) − ε, r(µ∞(u)) + ε]) is actually

independent of u, and when u = 0 it takes the form

P(Spec(WN +DN ) ⊂ [l(ρsc,B′′(0) � µD)− ε, r(ρsc,B′′(0) � µD) + ε]).

Estimates showing that this tends to one are classical, since WN is
√
B′′(0) times a GOE matrix

and DN has no outliers by assumption (recall that we made this assumption only for counting

local minima, not for counting total critical points). In the generality we need (i.e., with the fewest

assumptions on DN ), this estimate follows from the large-deviations result [121, (2.5)] (written

for GOE, not
√
B′′(0) times GOE, but clearly goes through in this generality); this verifies [35,

(4.7)]. Finally, the topological requirement [35, (4.8)] follows immediately after noticing that (in

the notation there)

G = {u : µ∞(u)((−∞, 0)) = 0} = {u : u > −l(ρsc,B′′(0) � µD)},

G+ε = {u : l(µ∞(u)) > 2ε} = {u : u > 2ε− l(ρsc,B′′(0) � µD)}.
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Having checked all the conditions, we can apply [35, Theorem 4.5] to complete the proof.

Proof of Theorem 3.2.6. This follows immediately from (3.5.2), (3.5.3), and Proposition 3.5.3.

3.5.2 Analyzing the variational formula. The key idea presented here is a dynamical analysis

of the variational formulas appearing in the previous section, increasing the noise parameter B′′(0).

Important ingredients are the Burgers’ equation (3.5.10) and the square root edge behavior of the

relevant free convolutions, as proved in Appendix B.

Proof of Theorem 3.2.8. In this proof, we state several claims as lemmas, postponing their proofs.

We think of the variational problem as dynamic in the parameter t, which corresponds to the

noise parameter B′′(0) in the complexity problem, for fixed µD. That is, at “time 0” we have a

pure signal with zero complexity, and as “time” (meaning noise) increases we find a threshold at

which complexity becomes positive. Precisely, write

µt = ρsc,t � µD,

`t = l(µt),

rt = r(µt),

for the free convolution of µD with the semi-circular distribution of variance t (which has density

µt(·)) and its left and right edges, respectively. Let

F (u, t) = −
∫
R

log(λ)µD(dλ) +
∫
R

log|λ− u|µt(λ) dλ− u2

2t

and recall that we are interested in

Σtot(µD, t) = sup
u∈R

F (u, t),

Σmin(µD, t) = sup
u6`t

F (u, t).
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Let

ut = −t
∫
µD(dλ)

λ
, (3.5.9)

and consider the thresholds

t0 = inf{t > 0 : ut = `t},

tc =
(∫

µD(dλ)
λ2

)−1
.

Later we will show that t0 = tc, but for now we distinguish between them. In particular we do

not yet assume that t0 is finite. Since µD is supported in (0,∞), we have u0 = 0 < `0, and by

continuity we have ut < `t for all t < t0.

Let mt be the Stieltjes transform of µt, with the sign convention mt(z) =
∫
R
µt(dλ)
λ−z . It is known

(see for example [152, 49], noting their opposite sign convention mt(z) =
∫
R
···
z−λ) that for any z

outside the support of µt, we have

∂tmt(z)−mt(z)∂zmt(z) = 0. (3.5.10)

For t < t0, ut is not in the support of µt, so (3.5.10) gives

d
dtmt(ut) = ∂umt(u)∂tut + ∂tmt(u) = ∂umt(u)(∂tut +mt(ut)) = ∂umt(u)(−m0(u0) +mt(ut)).

The (unique) solution to this differential equation is clearly mt(ut) = m0(u0), so that

−mt(ut)−
ut
t

= 0, (3.5.11)

i.e. (
∂

∂u
F (u, t)

)
u=ut

= 0 (3.5.12)

for t < t0.
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Lemma 3.5.4. For any u ∈ R, we have

d
dt

∫
R

log|λ− u|µt(dλ) = Im(mt(u))2 − Re(mt(u))2

2 .

For t < t0 (when Im(mt(ut)) = 0), we can then use (3.5.12), Lemma 3.5.4, and (3.5.11) to

obtain

d
dtF (ut, t) =

(
∂

∂t
F (u, t)

)
u=ut

+
(
∂

∂u
F (u, t)

)
u=ut

∂tut =
(
∂

∂t
F (u, t)

)
u=ut

= −mt(ut)2

2 + (ut)2

2t2 = 0.

Together with F (ut, t)→ 0 as t→ 0, the above equation gives

F (ut, t) = 0 (3.5.13)

for t < t0.

Lemma 3.5.5. For every measure µD and every t, the function F (u, t) is concave in u (possibly

not strictly).

From (3.5.12), (3.5.13), and Lemma 3.5.5 we conclude that

Σtot(µD, t) = Σmin(µD, t) = F (ut, t) = 0 for all t < t0. (3.5.14)

Now we study the phase t > t0, showing t0 <∞ along the way, by considering the evolution of

`t.

Lemma 3.5.6. For all t > 0 we have

∂t`t = −Re(mt(`t)).

Since the density of µt decays to zero at its edges (in fact at least as quickly as a cube root
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[49]), we have Im(mt(`t)) = 0 for all t. From Lemmas 3.5.6 and 3.5.4 we therefore obtain

d
dtF (`t, t) =

(
∂

∂u
F (u, t)

)
u=`t

∂t`t +
(
∂

∂t
F (u, t)

)
u=`t

=
(
−Re(mt(`t))−

`t
t

)
(−Re(mt(`t))) + (Im(mt(`t)))2

2 + 1
2

[(
`t
t

)2
− (Re(mt(`t)))2

]

= 1
2

(
`t
t

+ Re(mt(`t))
)2

= 1
2

[(
∂

∂u
F (u, t)

)
u=`t

]2

.

(3.5.15)

To analyze this, we use the following lemma.

Lemma 3.5.7. We have

(
∂

∂u
F (u, t)

)
u=`t



< 0 if 0 < t < tc,

= 0 if t = tc,

> 0 if t > tc.

Thus (3.5.15) is positive for t 6= tc and vanishes at t = tc. This has two important consequences.

First, F (`t, t) is a strictly increasing function of t. Second,

t0 = tc. (3.5.16)

Indeed, on the one hand, for t < t0 and small ε > 0, we have

F (`t, t) < F (`t+ε, t+ ε) 6 F (ut+ε, t+ ε) = 0 = F (ut, t),

so that
(
∂
∂uF (u, t)

)
u=`t

6= 0 by concavity in u (Lemma 3.5.5) and (3.5.12), and thus t 6= tc. Hence

t0 6 tc <∞.
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On the other hand, if t has the property that supu∈R F (u, t) = F (`t, t), then we have

(
∂

∂u
F (u, t)

)
u=`t

= 0,

thus t = tc. But t0 has this property, now that we know it is finite, since by continuity we have

0 = sup
u∈R

F (u, t0) = F (ut0 , t0) = F (`t0 , t0).

We have shown that F (`t, t) is a strictly increasing function which vanishes at tc; thus

Σtot(µD, t) > Σmin(µD, t) > F (`t, t) > F (`tc , tc) = 0 for all t > tc. (3.5.17)

The fact that both complexities vanish if and only if t 6 tc follows immediately from (3.5.14),

(3.5.16), and (3.5.17) (the case t = t0 follows from (3.5.14) by continuity).

Lemmas 3.5.5 and 3.5.7 combine to give (3.2.11), as well as strict inequality in Σtot(µD, t) >

Σmin(µD, t) for t > tc. Now we prove (3.2.12). To do this, we will rely on Pastur’s relation [131]

mt(z) =
∫

µD(dλ)
λ− z − tmt(z)

. (3.5.18)

By taking real and imaginary parts of (3.5.18), we get for any u ∈ R the coupled system

Re(mt(u)) =
∫

λ− u− tRe(mt(u))
(λ− u− tRe(mt(u)))2 + t2 Im(mt(u))2 µD(dλ), (3.5.19)

Im(mt(u)) = t

∫ Im(mt(u))
(λ− u− tRe(mt(u)))2 + t2 Im(mt(u))2 µD(dλ). (3.5.20)

If vt satisfies F (vt, t) = supu∈R F (u, t), then

0 =
(
∂

∂u
F (u, t)

)
u=vt

= −vt
t
− Re(mt(vt)).
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We plug this into (3.5.19) and (3.5.20) to obtain, writing yt = Im(mt(vt)),

−vt
t

=
∫

λ

λ2 + t2y2
t

µD(dλ), (3.5.21)

yt = t

∫
yt

λ2 + t2y2
t

µD(dλ). (3.5.22)

From its definition, yt > 0. For every t > 0, notice that (ut, 0) is a solution to the coupled system

{(3.5.21), (3.5.22)}, where ut was defined in (3.5.9). We claim that this is the unique solution when

t 6 tc, but that for t > tc there is exactly one more solution, with yt > 0, and that for such times

this latter solution is the one corresponding to the optimizer (i.e., for t > tc the point ut is not an

optimizer anymore).

For existence and uniqueness of this second solution exactly when t > tc, we note that the

positive solutions yt to (3.5.22) are exactly the positive solutions to

1
t

=
∫
R

µD(dλ)
λ2 + t2y2

t

, (3.5.23)

but the right-hand side of this equation is a strictly decreasing function of yt, tending to zero as

yt → +∞ and tending to 1
tc

as yt ↓ 0 (which is bigger than 1
t precisely when t > tc).

To verify the claim that ut is not an optimizer when t > tc, it suffices to show

ut 6 `t for all t. (3.5.24)

Indeed, since F (u, t) is concave and
(
∂
∂uF (u, t)

)
)u=`t > 0 in the regime t > tc, (3.5.24) would imply

that ut is not the optimizer of F (·, t) when t > tc.

To show (3.5.24), we will show that t 7→ `t − ut is convex with a vanishing derivative at t = tc,

where it takes the value zero. First we claim

d2

dt2 (`t − ut) = d2

dt2 `t = d
dt(−mt(`t)) > 0 (3.5.25)
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for all t. Indeed, a simple calculation similar to the previous ones gives, for any ε > 0,

d
dtmt(`t − ε) = (mt(`t − ε)−mt(`t))∂umt(`t − ε) =

∫ −
√
εµt(dλ)

(λ− (`t − ε))(λ− `t)

∫ √
εµt(dλ)

(λ− (`t − ε))2 < 0.

(3.5.26)

As ε ↓ 0, each of the integrals on the right-hand side converges, since µt decays at its left edge at

least as quickly as a square root by Proposition B.1, and since, for example,

lim
ε↓0

∫ 1

0

√
εxp

(x+ ε)x dx =


π if p = 1/2,

0 if p > 1/2.

(When p = 1/2, this can be integrated directly at each ε; when p > 1/2, we use dominated

convergence with dominating function 1
2x

p− 3
2 .) Thus in the limit ε ↓ 0 we prove the existence of

d
dtmt(`t) 6 0, concluding the proof of (3.5.25). Since

[ d
dt(`t − ut)

]
t=tc

= −Re(mtc(`tc))−
utc
tc

= −Re(mtc(`tc))−
`tc
tc

=
(
∂

∂u
F (u, tc)

)
u=`tc

= 0

with `tc = utc , we conclude (3.5.24) and thus (3.2.12).

Next we study the degree of vanishing of Σtot(µD, t) = F (vt, t) as t ↓ tc. First, note that vt

and yt are C1 functions of t > tc with the appropriate right-hand limits at criticality (namely

limt↓tc yt = 0 and limt↓tc vt = `tc): this is proved, first by studying yt via (3.5.23) and the implicit

function theorem, then studying vt via (3.5.21) using the knowledge of yt. For t > tc, Lemma 3.5.4

gives

d
dtF (vt, t) =

(
∂

∂u
F (u, t)

)
u=vt︸ ︷︷ ︸

=0

∂tvt +
(
∂

∂t
F (u, t)

)
u=vt

= Im(mt(vt))2 − Re(mt(vt))2

2 + v2
t

2t2 = Im(mt(vt))2

2 = y2
t

2 .

As t ↓ tc, this tends to zero. Differentiating (3.5.23) in t to find an expression for yty′t and inserting
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it, we find
d2

dt2F (vt, t) = yty
′
t = 1

2t4
∫
R

µD(dλ)
(λ2+t2y2

t )2

− y2
t

t
.

As t ↓ tc, this tends to 1
2 t
−4
c

(∫
R
µD(dλ)
λ4

)−1
= 1

2

(∫
R
µD(dλ)
λ2

)4(∫
R
µD(dλ)
λ4

)−1
, which is positive. This

gives us the quadratic decay and the prefactor.

Finally we study the degree of vanishing of Σmin(µD, t) = F (`t, t) as t ↓ tc. To do this, we

first study regularity of mt(`t) (we studied regularity of `t above, around (3.5.25)). Notice that

Im(mt(`t)) = 0 but Im(mt(`t+ε)) > 0 for all sufficiently small ε > 0, since µt admits a density that

vanishes at the endpoints and is analytic where positive [49]; using this in the real and imaginary

parts (3.5.19) and (3.5.20) of the Pastur relation, we obtain

mt(`t) =
∫ 1
λ− `t − tmt(`t)

µD(dλ), (3.5.27)

1 = t

∫ 1
(λ− `t − tmt(`t))2 µD(dλ). (3.5.28)

For t > tc, we will show in the proof of Lemma 3.5.7 that `t+tmt(`t) < 0; thus
∫ µD(dλ)

(λ−`t−tmt(`t))p <∞

for all p > 0. This also implies, using the implicit function theorem, that `t+tmt(`t) is a C2 function

of t > tc, hence so is mt(`t). Differentiating (3.5.28) in t and solving for d
dtmt(`t), we find

d
dtmt(`t) = − 1

2t3
(∫

R
µD(dλ)

(λ−`t−tmt(`t))3

) .

As t ↓ tc, this tends to −1
2

(∫
R
µD(dλ)
λ2

)3(∫
R
µD(dλ)
λ3

)−1
. Now we compute derivatives: We have

F (`tc , tc) = 0, by combining (3.5.15) and Lemma 3.5.7 we find that the first derivative also vanishes

at criticality. Next, from (3.5.15) and Lemma 3.5.6 we have

d2

dt2F (`t, t) =
(
`t
t

+mt(`t)
)(
−mt(`t)

t
− `t
t2

+ d
dtmt(`t)

)
.
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At t = tc, this vanishes by Lemma 3.5.7. The third derivative is

d3

dt3F (`t, t) =
(
`t
t

+mt(`t)
)(
−1
t
· d

dtmt(`t) + 2mt(`t)
t2

+ 2 `t
t3

+ d2

dt2mt(`t)
)

+
(
−mt(`t)

t
− `t
t2

+ d
dtmt(`t)

)2
.

Since `tc
tc

+ mtc(`tc) = 0, at t = tc this reduces to
[(

d
dtmt(`t)

)
t=tc

]2
, which we computed above

(and which is clearly nonzero). This gives the cubic decay and the prefactor, and completes the

proof.

Proof of Lemma 3.5.4. For large (in absolute value) negative A and small η > 0, by (3.5.10) we

have

d
dt

∫
R

(log|λ− (u+ iη)| − log|λ− (A+ iη)|)µt(λ) dλ

= − d
dt

∫
R

∫ u

A

λ− x
(λ− x)2 + η2 dxµt(dλ) = − d

dt

∫ u

A

[∫
R

Re µt(dλ)
λ− (x+ iη)

]
dx

= −Re
[∫ u

A

d
dtmt(x+ iη) dx

]
= −1

2 Re
[∫ u

A
∂z(mt(x+ iη)2) dx

]
= −Re(mt(u+ iη)2)− Re(mt(A+ iη)2)

2 .

(3.5.29)

We will take A → −∞ and η ↓ 0 in that order. After these two limits, the right-hand side of

(3.5.29) reads
Im(mt(u))2 − Re(mt(u))2

2 .

Now we claim that

lim
A→−∞

d
dt

∫
R

log|λ− (A+ iη)|µt(λ) dλ = 0 (3.5.30)
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for every η > 0. Indeed, since µt has mass one for all t and µt(rt) = µt(`t) = 0, we have

d
dt

∫
R

log|λ− (A+ iη)|µt(λ) dλ = d
dt

∫ rt

`t
log
∣∣∣∣−λ+ iη

A
+ 1

∣∣∣∣µt(λ) dλ

=
∫ rt

`t
log
∣∣∣∣−λ+ iη

A
+ 1

∣∣∣∣∂tµt(λ) dλ.

As A → −∞, the integrand on the right-hand side tends pointwise to zero, and it is bounded in

absolute value by

|∂tµt(λ)|max
{∣∣∣∣log

∣∣∣∣−`t + iη
A0

+ 1
∣∣∣∣∣∣∣∣, ∣∣∣∣log

∣∣∣∣−rt + iη
A0

+ 1
∣∣∣∣∣∣∣∣}

for all A > A0 = A0(t). This is integrable by Lemma 3.5.8 below and Hölder’s inequality, so we

can conclude the proof of (3.5.30) by dominated convergence.

Thus as A→ −∞ the left-hand side of (3.5.29) tends to

d
dt

∫
R

log|λ− (u+ iη)|µt(λ) dλ =
∫ rt

`t
log|λ− (u+ iη)|∂tµt(λ) dλ.

As η ↓ 0, this tends to d
dt
∫

log|λ− u|µt(λ) dλ by dominated convergence, using for example the

dominating function

max{− log |λ− u|,− log(1/2), log
√

(λ− u)2 + 1/2}|∂tµt(λ)|1λ∈[`t,rt]

for η2 < 1/2, which is integrable by Lemma 3.5.8 and Hölder’s inequality.

Lemma 3.5.8. The derivative ∂tµt(λ) is in Lp(R), as a function of λ, for 1 < p < 3/2.

Proof. For η > 0, the Burgers equation (3.5.10) gives

∂t Im(mt(λ+ iη)) = Im
(
∂z

(
mt(λ+ iη)2

2

))
= ∂z

[
Re(mt(λ+ iη)) Im(mt(λ+ iη))

]
=
[
∂λ Re(mt(λ+ iη))

]
Im(mt(λ+ iη)) +

[
∂λ Im(mt(λ+ iη))

]
Re(mt(λ+ iη)).

(3.5.31)
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We now consider η ↓ 0. As µt is analytic on {λ : µt(λ) > 0} [49, Corollary 4], if λ is not an edge or

cusp of µt,

lim
η↓0

∂λ Im(mt(λ+ iη)) = lim
η↓0

(
π

∫
R

η

(s− λ)2 + η2µ
′
t(s) ds

)
= πµ′t(λ).

As µ′t is compactly supported and analytic on the set where it does not vanish, this limit is locally

uniform in λ. By the same argument, this local uniformity also holds for limη↓0 Im(mt(λ + iη)) =

πµt(λ). We argue similarly for the real part (noting that the interchange limη↓0 ∂λ Re(mt(λ+iη)) =

∂λ Re(mt(λ + i0+)) is simply a rephrasing of the fact that the Hilbert transform commutes with

differentiation). Furthermore, [49, Proposition 2, Lemma 3] gives

sup
z∈H
|mt(z)| 6

1√
t
. (3.5.32)

Thus the right-hand side of (3.5.31) tends to π∂λ[Re(mt(λ + i0+))µt(λ)] as η ↓ 0, and this limit

is locally uniform in λ. This justifies swapping the limit and derivative on the left-hand side of

(3.5.31), and dividing through by π we obtain

∂tµt(λ) = ∂λ

[
Re(mt(λ+ i0+))µt(λ)

]
(3.5.33)

for λ not an edge or cusp of µt.

Now we prove the regularity claim. Since µt decays at most like a cube root near its edges

and possible cusps [49, Corollary 5], we have ∂λµt ∈ Lp(dλ), for any 1 6 p < 3/2. Since the

Hilbert transform commutes with differentiation and is bounded on Lp for 1 < p < ∞, we also

have ∂λ(Re(mt(λ + i0+))) ∈ Lp(dλ), for the same range of p values. Expanding the derivative in

(3.5.33) and using (3.5.32), we conclude that ∂tµt is in Lp for 1 < p < 3/2.

Proof of Lemma 3.5.5. Assume first that supp(µD) is connected. By [49, Proposition 3] supp(µt)

is connected for any t > 0. By [49, Corollary 4] µt has a density that is analytic on {x : µt(x) > 0}

(although it can have cusps).

Outside of supp(µt), the function F (·, t) is concave as the sum of concave functions. For µt(u) >
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0, we compute ∂uuF (u, t) below. For any η = Im z > 0 by taking the imaginary part of (3.5.18) we

have on the one hand

Immt(z) =
∫
µD(dλ)(η + t Immt(z))
|λ− z − tmt(z)|2

,

i.e.

1 = t

∫
µD(dλ)

|λ− z − tmt(z)|2
, (3.5.34)

for z = u+ iη and η = 0+. On the other hand, differentiation of (3.5.18) gives

Re ∂zmt(z) = Re X

1− tX = 1
t

Re 1
1− tX −

1
t

with X :=
∫

µD(dλ)
(λ− z − tmt(z))2 .

From (3.5.34), for z = u + i0+ we have |tX| 6 1 so that Re 1
1−tX > 0. Note that by analyticity,

∂zm = ∂u Rem+ i∂u Imm, so we have proved

∂umt(u) > −1
t
,

so that
∂2

∂u2F (u, t) 6 1
t
− 1
t
6 0.

Since F (·, t) is differentiable at `t (with derivative −Re(mt(`t))− `t/t) and similarly for rt, this

completes the proof if supp(µD) is connected. In the general case, write I for the convex hull of

supp(µD), which is necessarily an interval gapped away from zero, write νI for uniform measure on

I, and consider the probability measures µ(ε)
D = (1− ε)µD + ενI . We temporarily add the measure

to the notation for F (u, t), writing F (u, t, µD). We have µ(ε)
D → µD weakly as ε→ 0; in particular,

since λ 7→ log(λ) is bounded and continuous on I, we have

lim
ε→0

∫
R

log(λ)µ(ε)
D (dλ) =

∫
R

log(λ)µD(dλ).

Combined with Lemma 3.5.9 below, this lets us conclude that F (·, t, µ(ε)
D ) → F (·, t, µD) pointwise

as ε→ 0. Since each supp(µ(ε)
D ) = I is connected, F (·, t, µD) is thus concave as the pointwise limit
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of concave functions.

Proof of Lemma 3.5.6. Differentiating both sides of (3.5.27) in t and using (3.5.28), we obtain

d
dt Re(mt(`t)) =

∫
∂t`t + t d

dt Re(mt(`t)) + Re(mt(`t))
(λ− `t − tRe(mt(`t)))2 µD(dλ)

= ∂t`t + Re(mt(`t))
t

+ d
dt Re(mt(`t)).

(Differentiability of mt(`t) was established using (3.5.26).) We note that the idea to study the

evolution of the edge by differentiating a self-consistent equation that it satisfies also appears in

the proof of [1, Proposition 3.4].

Proof of Lemma 3.5.7. Notice that

(
∂

∂u
F (u, t)

)
u=`t

= −`t
t
− Re(mt(`t)).

We work with the right-hand side. We claim that

`t + tRe(mt(`t)) 6 l(µD). (3.5.35)

This is in fact a special case of an inequality established by Guionnet-Maïda in the proof of [102,

Lemma 6.1], which says that if µ and ν are compactly supported probability measures and ω is the

so-called subordination function defined implicitly by

∫ (µ� ν)(dλ)
λ− z

=
∫

µ(dλ)
λ− ω(z) ,

then

ω(r(µ� ν)) > r(µ).

In our case, ν = ρsc,t and µ = µD, so that µ� ν = µt, and the Pastur relation (3.5.18) shows that

the subordination function is ω(z) = z + tmt(z). (In fact, these choices give us results about the
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right edge; to get (3.5.35), one should choose µ = −µD, the measure defined by −µD(A) = µD(−A)

for Borel A, then track the negative signs.)

Combined with (3.5.28), the result (3.5.35) shows that wt = `t + tRe(mt(`t)) is a solution to

the following constrained problem:


1
t

=
∫

µD(dλ)
(λ− wt)2 ,

wt 6 l(µD).
(3.5.36)

A short differential calculation shows that f(w) =
∫ µD(dλ)

(λ−w)2 is strictly increasing for w 6 `(µD), so

(3.5.36) has at most one solution. Furthermore, f(0) = 1
tc
; this means that the unique solution

(which we showed is `t + tRe(mt(`t))) must be positive if 0 < t < tc, must be zero if t = tc, and

must be negative if t > tc.

Lemma 3.5.9. Suppose that µN is a sequence of probability measures, all supported on some [a, b],

tending weakly to some µ∞ which is also supported on [a, b]. Then for every t > 0 and every u ∈ R

we have

lim
N→∞

∫
R

log|λ− u|(ρsc,t � µN )(λ) dλ =
∫
R

log|λ− u|(ρsc,t � µ∞)(λ) dλ.

Proof. For small positive η = ηN to be chosen, define logη : R → R by logη(x) = log|x+ iη|. For

any probability measure µ supported on [a, b], [49, Corollaries 2, 5] yields

(ρsc,t � µ)(λ) 6
( 3

4π3t2
(4 + b− a)

)1/3
1a−2

√
t6λ6b+2

√
t.

Since
∫
R

logη(λ)−log|λ|
η dλ = π, we have

∣∣∣∣∫
R

log|λ− u|(ρsc,t � µ)(λ) dλ−
∫
R

logη(λ− u)(ρsc,t � µ)(λ) dλ
∣∣∣∣ 6 ( 3

4π3t2
(4 + b− a)

)1/3
πη

which depends on µ only through [a, b]. On the other hand, the function fu,η(λ) = logη(λ − u) is
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1
2η -Lipschitz and bounded on [a− 2

√
t, b+ 2

√
t] by

max{|log(η)|,
∣∣∣logη(b− u+ 2

√
t)
∣∣∣, ∣∣∣logη(a− u− 2

√
t)
∣∣∣} = |log(η)|

where the equality holds for η sufficiently small depending on a, b, and u. Since combining [71,

Corollary 11.65, Theorem 11.3.3] and [48, Proposition 4.13] gives

dBL(ρsc,t � µN , ρsc,t � µ∞) 6 4
√
dBL(µN , µ∞),

we bound |
∫
R log|· − u|d(ρsc,t � µN )−

∫
R log|· − u|d(ρsc,t � µ∞)| with

∑
ν=µN ,µ∞

∣∣∣∣∫
R

(log|· − u| − logη(· − u))d(ρsc,t � ν)
∣∣∣∣+ ∣∣∣∣∫

R
logη(· − u)d(ρsc,t � µN − ρsc,t � µ∞)

∣∣∣∣
6
( 3

4π3t2
(4 + b− a)

)1/3
πη +

( 1
2η + |log(η)|

)
dBL(ρsc,t � µN , ρsc,t � µ∞)

6
( 3

4π3t2
(4 + b− a)

)1/3
πη +

( 1
2η + |log(η)|

)
4
√
dBL(µN , µ∞),

for η sufficiently small depending on u. If we choose η = ηN =
(
dBL(µN , µ∞)

)1/4
, which tends to

zero as N →∞, this upper bound also tends to zero as N →∞.
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Chapter 4

Complexity of bipartite spherical spin

glasses

This chapter is essentially borrowed from [120], which will appear on the

arXiv soon.

4.1 Introduction

4.1.1 History and motivations. Multi-species spin systems were first introduced in the 1970s

in the physics of metamagnets [109], and in the last fifteen years, their development has been

accelerated by applications of two kinds. First, in many social and biological networks it is natural

to group individuals into two populations, and the result can be modelled with bipartite spin

glasses, for example in immunology with two types of immune cells [3]. Second, certain types of

neural networks, such as Hopfield networks and restricted Boltzman machines, can be mapped to

bipartite spin systems [26, 4, 28].

Partially motivated by these applications, physical properties like the free energy of bipartite

spin glasses have been developed, mostly for what we will later call (1, 1) models with Ising spins

or variations thereof. These were treated both in the physics literature, first by Korenblit-Shender
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and Fyodorov-Korenblit-Shender [112, 86, 87] and later by Guerra and co-authors [27, 25], both

under the assumption of replica symmetry, and then by Hartnett et al. assuming replica symmetry

breaking [105]; and in the mathematical literature, first as an upper bound due to Barra et al. [24]

and then a matching lower bound due to Panchenko [129]. The free energy for spherical bipartite

models was established by Auffinger and Chen at high temperature [11], allowing for mixtures

and small external fields, and by Baik and Lee at all temperatures other than some critical one

[20], restricted to what we will call pure spherical (1, 1) models. Recently, bipartite spin glasses

appeared as a model example in Mourrat’s program to relate the free energy of disordered systems

to infinite-dimensional Hamilton-Jacobi equations [124].

Beyond applications, bipartite spin systems also serve as a toy model for spin glasses beyond the

purely mean-field regime. Spins interact with each other in two groups, a waystation between the

best-understood mean-field spin glasses (where all spins interact with each other on equal footing)

and the eventual goal of spin glasses with nearest-neighbor interactions.

4.1.2 Results. In this paper, we study the complexity of high-dimensional bipartite spherical

models. That is, write HN for an N -dimensional bipartite spin glass, which is a real-valued random

function defined on a product of two high-dimensional spheres (see precise definitions in Section

4.2). Write Crttot
N (t) for the (random) number of critical points of HN at which HN 6 Nt, and

Crtmin
N (t) for the number of such local minima. We wish to understand the large-N asymptotics of

1
N logE[Crttot

N (t)] and 1
N logE[Crtmin

N (t)].

This landscape-complexity program – counting critical points of high-dimensional random func-

tions to understand their geometry – was initiated by Fyodorov [84] for a certain toy model of dis-

ordered systems, and re-discovered by Auffinger-Ben Arous-Černý for spherical spin glasses [10, 9].

Complexity of spherical bipartite models was first studied by Auffinger and Chen [11], who found

continuous functions J,K : R→ R such that

J(t) 6 lim
N→∞

1
N

logE[Crtmin
N (t)] 6 K(t).

164



Their strategy was to compare bipartite spin glasses with a coupled pair of usual (single-species)

spin glasses. They also established that J(t) > 0 for some t, so that the system has positive

complexity, and that limt→−∞K(t) = −∞, so that it makes sense to define the “smallest zero of

K” which is thus a lower bound for the ground state.

In Theorem 4.2.1 below, we give exact formulas for

lim
N→∞

1
N

logE[Crttot
N (t)], lim

N→∞

1
N

logE[Crtmin
N (t)]

that are of the form

sup
u∈D

{∫
R

log|λ|µ∞(u, λ) dλ− ‖u‖
2

2

}
.

Here D is some subset of R (for pure models) or R3 (for mixtures), and the deterministic probability

measures µ∞(u, ·) are found by solving a system of two coupled quadratic equations in two scalar

unknowns. This system arises from the Matrix Dyson Equation (MDE), developed to describe the

local eigenvalue behavior of large random matrices in [5, 75, 6].

For the special case of pure (p, q) models with ratio γ = p
p+q (see definitions below), the measures

µ∞(u, ·) are rescalings the semicircle law, so these variational problems can be solved explicitly.

The resulting complexity functions turn out to be the same as those describing the pure p+q usual

(single-species) spherical spin glass, as established by Auffinger-Ben Arous-Černý [10]; see Corollary

4.2.5 below. This is surprising, since the models look quite different. It remains to be seen if this

analogy holds for other types of critical points, such as saddle points, for bipartite models with

ratios γ other than p
p+q , or for more than two communities.

We also show that pure (p, q) models, with any ratio γ, exhibit a band-of-minima phenomenon

similar to pure spherical spin glasses. More precisely, there exists a threshold −E∞(p, q, γ) < 0

such that, with high probability and for any ε > 0, all local minima have energy values below

N(−E∞(p, q, γ) + ε); see Corollary 4.2.4 below. It would be interesting to understand the role of

this threshold in, say, Langevin dynamics.

The paper is organized as follows. In Section 4.2 we state our main results, both variational
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formulas for general models and closed-form formulas for the special case stated above. In Section

4.3 we give the proofs, which rely on determinant asymptotics for large random matrices as estab-

lished in the companion paper [35], and strategies for applying these to complexity as established

in the companion paper [36].

Notations. We write ‖ · ‖ for the operator norm on elements of CN×N induced by Euclidean

distance on CN , and if S : CN×N → CN×N , we write ‖S‖ for the operator norm induced by ‖ · ‖.

We let

‖f‖Lip = sup
x 6=y

∣∣∣∣f(x)− f(y)
x− y

∣∣∣∣
for test functions f : R→ R, and consider the following two distances on probability measures on

the real line (called bounded-Lipschitz and Wasserstein-1, respectively):

dBL(µ, ν) = sup
{∣∣∣∣∫

R
f d(µ− ν)

∣∣∣∣ : ‖f‖Lip + ‖f‖L∞ 6 1
}
,

W1(µ, ν) = sup
{∣∣∣∣∫

R
f d(µ− ν)

∣∣∣∣ : ‖f‖Lip 6 1
}
.

We write l(µ) for the left edge (respectively, r(µ) for the right edge) of a compactly supported

measure µ. For an N × N Hermitian matrix M , we write λmin (M) = λ1(M) 6 · · · 6 λN (M) =

λmax (M) for its eigenvalues and

µ̂M = 1
N

N∑
i=1

δλi(M)

for its empirical measure. We write � for the entrywise (i.e., Hadamard) product of matrices.

Given a matrix T , we write diag(T ) for the diagonal matrix of the same size obtained by setting all

off-diagonal entries to zero. In equations, we sometimes identify diagonal matrices with vectors of

the same size. We write BR(0) for the ball of radius R about zero in the relevant Euclidean space.

We use (·)T for the matrix transpose, which should be distinguished both from (·)∗ for the matrix

conjugate transpose, and from Tr(·) for the matrix trace.

Unless stated otherwise, z will always be a complex number in the upper half-plane H = {z ∈
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C : Im(z) > 0}, and we always write its real and imaginary parts as z = E + iη.

Acknowledgements. We wish to thank Tuca Auffinger for bringing the bipartite spin glass model

to our attention, and Gérard Ben Arous and Paul Bourgade for many helpful discussions. BM was

supported by NSF grant DMS-1812114.

4.2 Main results

We follow the notation of [11]. If M ∈ N, write SM for the (M −1) sphere in RM with radius
√
M .

Fix some γ ∈ (0, 1), suppose that we decompose each positive integer N > 2 as N = N1 + N2,

where N1 and N2 are positive integers satisfying N1 ≈ γN in the precise sense

N1 − 1
N − 2 = γ. (4.2.1)

(Notice the abuse of notation: N1 is actually a sequence of positive integers.) For any p, q > 1,

define the pure bipartite Hamiltonian for u = (u1, . . . , uN1) ∈ SN1 and v = (v1, . . . , vN2) ∈ SN2 as

HN,p,q(u, v) =
∑

16i1,...,ip6N1

∑
16j1,...,jq6N2

gi1,...,ip,j1,...,jqui1 . . . uipvj1 . . . vjq

where the g variables are i.i.d. centered Gaussians with variance N/(Np
1N

q
2 ). Equivalently, HN,p,q

is the centered Gaussian process on SN1 × SN2 with covariance

E[HN,p,q(u, v)HN,p,q(u′, v′)] = N

 1
N1

N1∑
i=1

uiu
′
i

p 1
N2

N2∑
i=1

viv
′
i

q.
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Notice that this interaction is genuinely bipartite, i.e. it is not a pure spin glass of the concatenated

vector (u1, . . . , uN1 , v1, . . . , vN2). Define the “mixed” Hamiltonian

HN (u, v) =
∑
p,q>1

βp,qHN,p,q(u, v)

where the nonnegative double sequence (βp,q)p,q>1 is not identically zero and decays fast enough;

for example,
∑
p,q>1 2p+qβ2

p,q <∞ suffices. Define ξ : [0, 1]2 → R by

ξ(x, y) =
∑
p,q>1

β2
p,qx

pyq

assumed to be normalized as

ξ(1, 1) = 1.

We will say the model is “pure (p0, q0)” if βp,q = δpp0δqq0 , and “pure” if it is pure (p0, q0) for some

p0, q0. Define

ξ′1 = ∂xξ(1, 1) =
∑
p,q>1

pβ2
p,q, ξ′′1 = ∂xxξ(1, 1) =

∑
p,q>1

p(p− 1)β2
p,q,

ξ′2 = ∂yξ(1, 1) =
∑
p,q>1

qβ2
p,q, ξ′′2 = ∂yyξ(1, 1) =

∑
p,q>1

q(q − 1)β2
p,q.

Since ξ(1, 1) = 1, one can check with Cauchy-Schwarz that ξ′′i + ξ′i − (ξ′i)2 > 0 for each i = 1, 2, so

that we may define

αi =
√
ξ′′i + ξ′i − (ξ′i)2.

Notice that α1 = α2 = 0 if and only if the model is pure.

Results. Write Crttot
N (t) for the number of critical points of HN at which HN 6 Nt, and Crttot

N for

the total number of critical points of HN . Write also Crtmin
N (t) for the number of local minima of

HN at which HN 6 Nt, and Crtmin
N for the total number of local minima of HN .
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In the statement, we will need the half-space

Ht = {(u0, u1, u2) : u0 6 t} ⊂ R3.

Theorem 4.2.1. Suppose that

ξ′′1 > 0 and ξ′′2 > 0. (4.2.2)

This condition is satisfied if and only if the model is neither a pure (1, q) spin for some q, nor a

pure (p, 1) spin for some p.

For each u ∈ R3, there exists a compactly supported probability measure µ∞(u) with a bounded

density µ∞(u, ·) (see Remark 4.2.2 below for its definition) such that, if we define

Sbsg[u] =
∫
R

log|λ|µ∞(u, λ) dλ− ‖u‖
2
2

2 ,

then

Σtot(t) := lim
N→∞

1
N

logE[Crttot
N (t)] =

1 + γ log
(
γ
ξ′1

)
+ (1− γ) log

(
1−γ
ξ′2

)
2 + sup

u∈Ht
Sbsg[u],

Σtot := lim
N→∞

1
N

logE[Crttot
N ] =

1 + γ log
(
γ
ξ′1

)
+ (1− γ) log

(
1−γ
ξ′2

)
2 + sup

u∈R3
Sbsg[u],

(4.2.3)

and these suprema are achieved, possibly not uniquely.

Furthermore, define the set

G = {u ∈ R3 : µ∞(u)((−∞, 0)) = 0} (4.2.4)

of u values whose corresponding measures µ∞(u) are supported in the right half-line. Then G is
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convex and closed, and we have

Σmin(t) := lim sup
N→∞

1
N

logE[Crtmin
N (t)] =

1 + γ log
(
γ
ξ′1

)
+ (1− γ) log

(
1−γ
ξ′2

)
2 + sup

u∈Ht∩G
Sbsg[u],

Σmin := lim sup
N→∞

1
N

logE[Crtmin
N ] =

1 + γ log
(
γ
ξ′1

)
+ (1− γ) log

(
1−γ
ξ′2

)
2 + sup

u∈G
Sbsg[u],

(4.2.5)

and these suprema are achieved, possibly not uniquely (Ht ∩ G is nonempty for every t).

Remark 4.2.2. The measures µ∞(u) are found as follows: For each u = (u0, u1, u2) ∈ R3 and

each z ∈ H, let {m1(u, z),m2(u, z)} ∈ C2 be the unique pair satisfying



1 +
(
z − 1

γ (α1u1 − ξ′1u0) + ξ′′1
γ m1(u, z) + ξ′1ξ

′
2

γ m2(u, z)
)
m1(u, z) = 0,

1 +
(
z − 1

1−γ (α2u2 − ξ′2u0) + ξ′′2
1−γm2(u, z) + ξ′1ξ

′
2

1−γm1(u, z)
)
m2(u, z) = 0,

Im(m1(u, z)) > 0,

Im(m2(u, z)) > 0.

(4.2.6)

Then µ∞(u) is the measure whose Stieltjes transform at z is γm1(u, z) + (1 − γ)m2(u, z). (In

Lemma 4.3.5 below, we will prove all of the implicit claims here about existence, uniqueness, and

regularity using the methods of Erdős and co-authors).

Remark 4.2.3. In the special case when the model is pure (p, q), the result simplifies somewhat:

The terms α1u1 and α2u2 vanish in (4.2.6), so µ∞((u0, u1, u2)) is a function of u0 only. Thus G

takes the form

G = {u0 × R2 : u0 ∈ Gpure}

for some set Gpure = Gpure(p, q, γ) ⊂ R. Since G is convex and closed, and the proof shows that it

contains points whose first coordinates are arbitrarily large and negative, in fact Gpure must be an

interval of the form

Gpure = (−∞,−E∞(p, q, γ)] (4.2.7)

170



for some E∞(p, q, γ), which will turn out to be an important threshold. (This notation and sign

convention is intended to invoke [10]; see discussion below.)

One consequence of this simplification is that the variational problems for pure (p, q) models are

one-dimensional:

lim
N→∞

1
N

logE[Crttot
N (t)] =

1 + γ log
(
γ
p

)
+ (1− γ) log

(
1−γ
q

)
2 + max

u06t
Sbsg[(u0, 0, 0)],

lim
N→∞

1
N

logE[Crttot
N ] =

1 + γ log
(
γ
p

)
+ (1− γ) log

(
1−γ
q

)
2 + max

u0∈R
Sbsg[(u0, 0, 0)],

and similarly for minima.

Corollary 4.2.4. For every pure (p, q) model satisfying (4.2.2), the quantity −E∞(p, q, γ) defined

in (4.2.7) is strictly negative, and almost all local minima have energy below −NE∞(p, q, γ) in the

following senses:

– For all t > −E∞(p, q, γ), we have Σmin(t) = Σmin(−E∞(p, q, γ)).

– For any Borel set B, write Crtmin
N (B) for the number of local minima of HN at which HN ∈

NB. This corresponds to our previous notation as Crtmin
N (t) = Crtmin

N ((−∞, t)). For any

ε > 0, we have

lim
N→∞

1
N

logP(Crtmin
N ((−E∞(p, q, γ) + ε,∞)) > 1) = −∞.

In the extra-special case of a pure (p, q) model with γ = p
p+q , we can solve the variational

problems explicitly, because then the relevant Hessian is (almost, up to small error) a generalized

Wigner matrix and µ∞(u) is (exactly) a rescaled semicircle law. In the following we write the

log-potential of semicircle as

Ω(x) =
∫ 2

−2
log|λ− x|

√
4− λ2

2π dλ =


x2

4 −
1
2 if |x| 6 2,

x2

4 −
1
2 −

(
|x|
4
√
x2 − 4− log

(
|x|+
√
x2−4

2

))
if |x| > 2.
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Corollary 4.2.5. For a pure (p, q) model with γ = p
p+q , we have

E∞

(
p, q,

p

p+ q

)
= 2

√
p+ q − 1
p+ q

,

and

Σp+q(t) := lim
N→∞

1
N

logE[Crttot
N (t)] =


1+log(p+q−1)

2 + Ω
(
t
√

p+q
p+q−1

)
− t2

2 if t 6 0,

log(p+q−1)
2 if t > 0,

(4.2.8)

Σp+q := lim
N→∞

1
N

logE[Crttot
N ] = log(p+ q − 1)

2 ,

Σp+q,min(t) := lim
N→∞

1
N

logE[Crtmin
N (t)] =


Σp,q(t) if t 6 −E∞(p, q, p

p+q ),

Σp,q(−E∞(p, q, p
p+q )) if t > −E∞(p, q, p

p+q ),

Σp+q,min := lim
N→∞

1
N

logE[Crtmin
N ] = Σp,q

(
−E∞

(
p, q,

p

p+ q

))
= log(p+ q − 1)

2 + 2
p+ q

− 1.

Notice the surprising fact that, as implicit in the notation, these functions depend only on p + q

rather than on p and q individually.

Proof. Since u1 and u2 play no role, we drop them from the notation. The scalar problem (4.2.6) is

solved by m1(u0, z) = m2(u0, z) = m(u0, z), which satisfies a quadratic equation given by (4.2.6);

this yields

µ∞(u0,dλ) =
√

(4(p+ q − 1)(p+ q)− (λ+ (p+ q)u0)2)+
2π(p+ q − 1)(p+ q) dλ.

Since the left edge of this measure is explicit, E∞(p, q, p
p+q ) can be computed directly. After

changing variables we obtain

Sbsg[(u0, 0, 0)] = log
(√

(p+ q − 1)(p+ q)
)

+ Ω
(
u0

√
p+ q

p+ q − 1

)
− (u0)2

2

which is even, strictly concave, and uniquely maximized at zero; this allows us to solve the varia-

tional problem.
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Σ4(t)

Σ5(t)

Σ6(t)

-2.5 -2.0 -1.5 -1.0 -0.5 0.5 1.0
t

-1.0

-0.5

0.5

Σp+q(t)

Figure 4.1: Plots of Σp+q(t), which captures the asymptotic complexity of total critical points with
field values in (−∞, Nt) of the pure (p, q) model at γ = p

p+q , for p+ q = 4, 5, 6 (solid green, dashed
yellow, dotted purple, respectively). Negative values of Σp+q(t) are irrelevant for us, since we can
prove that the zero of Σp+q is a lower bound for the ground state (and we believe it is equal to
the ground state). The functions stabilize at t = 0: this is consistent with distributional symmetry
HN,p,q

d= −HN,p,q, since we would expect the total number of critical points to be twice the number
of critical points with values in (−∞, 0) on average.

The functions Σp+q(t) are strictly increasing on (−∞, 0), and Σp+q(0) > 0, so they each have a

unique zero. They are plotted for p+ q = 4, 5, 6 in Figure 4.1. Notice that p+ q = 4 (corresponding

to a pure (2, 2) bipartite spin glass) is the smallest value to which Theorem 4.2.1 applies. As a

corollary, we obtain a lower bound on the ground state of HN,p,q in the classical way.

Corollary 4.2.6. Let −E0(p + q) be the unique zero of the function Σp+q defined in (4.2.8), and

consider the Hamiltonian HN,p,q of a pure (p, q) model with γ = p
p+q . For any ε > 0 there exist

C1, C2 > 0 such that

P
(

min
u,v
HN,p,q(u, v) 6 N(−E0(p+ q)− ε)

)
6 C1 exp(−C2N).
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We compute numerically −E0(4) ≈ −1.794, −E0(5) ≈ −1.888, and −E0(6) ≈ −1.959. Finally,

lim
p+q→∞

E0(p+ q)√
log(p+ q)

= 1.

Proof. To locate the ground state, note that if minu,vHN,p,q(u, v) 6 N(−E0(p + q) − ε), then

Crttot
N (−E0(p + q) − ε) > 1; then apply Markov’s. To estimate −E0(p + q), use the crude bounds

0 6 Ω(−t
√

p+q
p+q−1) 6 −t

√
p+q
p+q−1 , valid for all t 6 −2, to get upper and lower bounds for Σp+q(t)

and hence for −E0(p+ q).

In fact, the functions Σp+q(t) and Σp+q,min(t) have already appeared in the literature, in [10]:

They give exactly the complexities of the numbers of critical points and of local minima, respectively,

of a spherical pure (p+ q)-spin glass below level Nt. That is, define the spherical pure (p+ q)-spin

Hamiltonian HN,p+q over σ = (σ1, . . . , σN ) ∈ SN−1 by

HN,p+q(σ) = 1
N (p+q−1)/2

N∑
i1,...,ip+q=1

Ji1,...,ip+qσi1 · · ·σip+q ,

where the J variables are i.i.d. standard Gaussians, and let Crtpure p+q
N (t) be the number of critical

points (and Crtpure p+q,min
N (t) be the number of local minima) of HN,p+q at which HN,p+q 6 Nt.

Then [10, Theorems 2.5, 2.8] show that

lim
N→∞

1
N

logE[Crtpure p+q
N (t)] = Σp+q(t), lim

N→∞

1
N

logE[Crtpure p+q,min
N (t)] = Σp+q,min(t).

(A computation shows that our Σp+q and Σp+q,min are their Θp+q and Θ0,p+q, respectively. We

have used their notation for −E0(p+ q) in the same normalization.)

But we emphasize that, despite the superficial similarity between the pure p+q-spin Hamiltonian

HN,p+q and the pure bipartite (p, q)-spin Hamiltonian HN,p,q with γ = p
p+q , they are different
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processes: Their covariance structures are (assuming N1 = γN for clarity)

E[HN,p+q(σ)HN,p+q(σ′)] = N1−(p+q)
(

N∑
i=1

σiσ
′
i

)p+q
,

E[HN,p,q(u, v)HN,p,q(u′, v′)] = N1−(p+q) (p+ q)p+q

ppqq

γN∑
i=1

uiu
′
i

p(1−γ)N∑
i=1

viv
′
i

q.
Remark 4.2.7. We believe that the restriction “neither a pure (1, q) spin nor a pure (p, 1) spin”

can be relaxed to “not a pure (1, 1) spin,” which is the restriction in [11]. See Remark 4.3.8 for a

discussion of the obstacles.

4.3 Proofs

Notation. We write

I1 = J1, N1 − 1K, I2 = JN1, N − 2K.

For each u ∈ R3, define AN (u), A′N (u) ∈ R((N1−1)+(N2−1))×((N1−1)+(N2−1)) by

AN (u) = AN (u0, u1, u2) =

 N
N1

(α1u1 − ξ′1u0) IdN1−1 0

0 N
N2

(α2u2 − ξ′2u0) IdN2−1

,

A′N (u) = A′N (u0, u1, u2) =

 1
γ (α1u1 − ξ′1u0) IdN1−1 0

0 1
1−γ (α2u2 − ξ′2u0) IdN2−1

.

Next, we define random matrices WN ,W
′
N ∈ R((N1−1)+(N2−1))×((N1−1)+(N2−1)) one block at a time.

Write G for an (N1− 1)× (N2− 1) matrix with i.i.d. centered Gaussian entries, each with variance
Nξ′1ξ

′
2

N1N2
. For each i = 1, 2, let Gi =

√
N(Ni−1)ξ′′i

N2
i

MNi , where each MNi is an (Ni− 1)× (Ni− 1) GOE

matrix with normalization E[(MNi)2
ij ] = 1+δij

Ni−1 , and where the MNi ’s are independent of each other
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and of G. Then we define WN by

WN =

G1 G

GT G2

.
Let TN ∈ R((N1−1)+(N2−1))×((N1−1)+(N2−1)) be given entrywise by

(TN )jk =



√
N2

1
(1+δij)γ2N(N−2) if j, k ∈ I1,√
N1N2

γN(N2−1) =
√

N1N2
(1−γ)N(N1−1) if j ∈ I1, k ∈ I2 or j ∈ I2, k ∈ I1,√

N2
2

(1+δij)(1−γ)2N(N−2) if j, k ∈ I2,

and let

W ′N = TN �WN .

(That is, W ′N is like WN , but all the variances are multiplied by a carefully chosen factor close to

one.) Finally, let

HN (u) = AN (u) +WN , H ′N (u) = A′N (u) +W ′N .

The matrix HN (u) is the one naturally appearing in the Kac-Rice formula, as we shall see, but it

is well approximated by the matrix H ′N (u), which is easier to work with.

While the definitions are fresh, we store the following lemma for later use:

Lemma 4.3.1. For every R > 0 and every ε > 0, we have

sup
u∈BR(0)

P(‖HN (u)−H ′N (u)‖ > ε) = OR,ε(e−N
0.49).

Proof. Write EN = WN −W ′N . From the definitions, we check that EN is a matrix of independent

Gaussian entries up to symmetry, and that there exists some constant C such that the off-diagonal

entries of EN have variance at most C/N3 and the diagonal entries have variance at most C/N . If
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‖ · ‖max is the maximum norm for matrices, we thus have

P
(
‖EN − diag(EN )‖max >

C

N5/4

)
6
N(N − 1)

2 P
(
|N (0, 1)| > N1/4

)
6 N2e−

√
N
2 .

Then

P(‖EN‖ > ε) 6 P
(
‖EN‖ > ε, ‖EN − diag(EN )‖ 6 C

N1/4

)
+N2e−

√
N
2

6 P
(
‖diag(EN )‖ 6 ε

2

)
+N2e−

√
N
2 ,

where the last inequality holds for N large enough. But now diag(EN ) has independent Gaussian

entries with variance order 1/N , so P(‖ diag(EN )‖ 6 ε/2) is order e−N up to polynomial factors in

N ; thus

P(‖EN‖ > ε) = O(e−N0.49),

say. On the other hand, we have

‖AN (u)−A′N (u)‖ = max
{∣∣∣∣ NN1

− 1
γ

∣∣∣∣∣∣α1u1 − ξ′1u0
∣∣, ∣∣∣∣ NN2

− 1
1− γ

∣∣∣∣∣∣α1u2 − ξ′2u0
∣∣} = O

(‖u‖
N

)
.

Since

P(‖HN (u)−H ′N (u)‖ > ε) 6 P
(
‖WN −W ′N‖ >

ε

2

)
+ 1‖AN (u)−A′N (u)‖> ε2 ,

this completes the proof.

An easy variation on the Kac-Rice arguments found in [11, Equation (27), Lemma 2, Lemma

3, Equation (37)] yields the following lemma.

Lemma 4.3.2. With the prefactor

f(N1, N2) = 2(πN1)N1/2

Γ(N1/2) · 2(πN2)N2/2

Γ(N2/2) ·

√N

2π

3(
(2πN)N−2 ·

(
ξ′1
N1

)N1−1( ξ′2
N2

)N2−1)−1/2

,
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we have

E[Crttot
N (t)] = f(N1, N2)

∫
Ht
e−N

‖u‖2
2 E[|det(HN (u))|] du,

E[Crttot
N ] = f(N1, N2)

∫
R3
e−N

‖u‖2
2 E[|det(HN (u))|] du,

E[Crtmin
N (t)] = f(N1, N2)

∫
Ht
e−N

‖u‖2
2 E[|det(HN (u))|1HN (u) > 0] du,

E[Crtmin
N ] = f(N1, N2)

∫
R3
e−N

‖u‖2
2 E[|det(HN (u))|1HN (u) > 0] du.

Notice

lim
N→∞

1
N

log f(N1, N2) =
1 + γ log

(
γ
ξ′1

)
+ (1− γ) log

(
1−γ
ξ′2

)
2 .

Thus it remains only to understand the integrals appearing in Lemma 4.3.2. We will do this with

[35, Theorems 4.1, 4.5] with the choices α = 1/2, p = 2, and D = R3 or D = Ht. In the following

lemmas, we check the conditions of these theorems.

The matrix HN (u) belongs both to the class of “Gaussian matrices with a (co)variance profile”

and the class of “block-diagonal Gaussian matrices” (with one block) considered in [35, Corollaries

1.8.A, 1.9]. The latter turns out to be more convenient, so we check the regularity assumptions of

[35, Corollary 1.9] as well.

Lemma 4.3.3. Define the matrix

σ = diag

Nξ′′1N2
1
,
Nξ′′1
N2

1
, . . .︸ ︷︷ ︸

N1−1 times

,
Nξ′′2
N2

2
,
Nξ′′2
N2

2
, . . .︸ ︷︷ ︸

N2−1 times



and consider the linear operators SN ,S ′N : C(N1−1)×(N2−1) → C(N1−1)×(N2−1) defined on block
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matrices T =
(
T11 T12
T21 T22

)
by

SN


T11 T12

T21 T22




=


(
Nξ′′1
N2

1
Tr(T11) + Nξ′1ξ

′
2

N1N2
Tr(T22)

)
Id 0

0
(
Nξ′1ξ

′
2

N1N2
Tr(T11) + Nξ′′2

N2
2

Tr(T22)
)

Id

+ σ � diag(T ),

S ′N


T11 T12

T21 T22




=


(

ξ′′1
γ(N1−1) Tr(T11) + ξ′1ξ

′
2

γ(N2−1) Tr(T22)
)

Id 0

0
(

ξ′1ξ
′
2

(1−γ)(N1−1) Tr(T11) + ξ′′2
(1−γ)(N2−1) Tr(T22)

)
Id

.
(4.3.1)

Here � is the entrywise (Hadamard) product of matrices. Suppose also that

ξ′′1 > 0 and ξ′′2 > 0.

Then each of these operators is flat, in the sense that for some κ and all N we have

T > 0 =⇒ 1
κ(N − 2) Tr(T ) 6 SN [T ] 6 κ

N − 2 Tr(T )

(and similarly for S ′N ). Furthermore, we have

sup
N

max(‖SN‖, ‖S ′N‖) <∞, (4.3.2)

‖SN − S ′N‖ = O
( 1
N

)
. (4.3.3)

Proof. Since
∣∣∣N1
N − γ

∣∣∣ = O( 1
N ) and ξ′′1 , ξ′′2 > 0, we can find κ such that

1
κ(N − 2) 6

Nξ′′1
N2

1
,
Nξ′1ξ

′
2

N1N2
,
Nξ′′2
N2

2
,

ξ′′1
γ(N1 − 1) ,

ξ′1ξ
′
2

γ(N2 − 1) ,
ξ′1ξ
′
2

(1− γ)(N1 − 1) ,
ξ′′2

(1− γ)(N2 − 1) 6
κ

N − 2 .
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If T > 0, then 0 6 σ � diag(T ) 6 κ
N−2 Tr(T ); this suffices to prove flatness for both operators.

Estimates like

‖σ � diag(T )‖ 6 κ

N − 2‖T‖ (4.3.4)

and ∣∣∣∣Nξ′′1N2
1

Tr(T11) + Nξ′1ξ
′
2

N1N2
Tr(T22)

∣∣∣∣ 6 κ2
N − 2(|Tr(T11)|+ |Tr(T22)|) 6 2κ‖T‖

establish (4.3.2). Finally, if we define the sequences

a
(N)
11 = Nξ′′1 (N − 2)

N2
1

− ξ′′1 (N − 2)
γ(N1 − 1) , a

(N)
12 = Nξ′1ξ

′
2(N − 2)
N1N2

− ξ′1ξ
′
2(N − 2)

γ(N2 − 1) ,

a
(N)
21 = Nξ′1ξ

′
2(N − 2)
N1N2

− ξ′1ξ
′
2(N − 2)

(1− γ)(N1 − 1) a
(N)
22 = Nξ′′2 (N − 2)

N2
2

− ξ′′2 (N − 2)
(1− γ)(N2 − 1) ,

then using (4.3.4) we conclude ‖SN −S ′N‖ 6 max{|a(N)
11 |+ |a

(N)
12 |, |a

(N)
21 |+ |a

(N)
22 |}. But we assumed

N1−1
N−2 = γ in (4.2.1), which tells us max(|a(N)

11 |, |a
(N)
12 |, |a

(N)
21 |, |a

(N)
22 |) = O(1/N); this completes the

proof of (4.3.3).

Lemma 4.3.4. The random matrices HN (u) satisfy the assumptions of [35, Corollary 1.9], and

furthermore

lim inf
N→∞

λmin (WN ) > −2
√

sup
N
‖SN‖ − 1 a.s. (4.3.5)

Proof. For the bounded-mean condition (MS), (4.2.1) tells us that N
N1

and N
N2

are bounded over N ,

so that

sup
N
‖AN (u)‖ = sup

N
max

{
N

N1
(|α1u1|+

∣∣ξ′1u0
∣∣), N
N2

(|α2u2|+
∣∣ξ′2u0

∣∣)} = O(‖u‖). (4.3.6)

The mean-field-randomness condition (MF) is clear, since (dropping the superscript since there is
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only one matrix) we have

sjk =



Nξ′′1 (1+δjk)
N2

1
if j, k ∈ I1,

Nξ′1ξ
′
2

N1N2
if j ∈ I1, k ∈ I2 or j ∈ I2, k ∈ I1,

Nξ′′2 (1+δjk)
N2

2
if j, k ∈ I2.

Now we check the regularity (R) of the MDE solution. In this context, the operators Si : CN−2 → C

defined by [35, (1.15)] have the form

Si[r] =


Nξ′′1
N2

1

∑
k∈I1(1 + δik)rk + Nξ′1ξ

′
2

N1N2

∑
k∈I2 rk if i ∈ I1,

Nξ′1ξ
′
2

N1N2

∑
k∈I1 rk + Nξ′′2

N2
2

∑
k∈I2(1 + δik)rk if i ∈ I2.

The appropriate MDE [35, (1.16)] is a system of N − 2 coupled scalar equations, with solution

m(u, z) ∈ CN−2, and we write µN for the measure thus obtained. To establish regularity of µN ,

we think of the N − 2 coupled scalar equations equivalently as a single MDE over matrices in

C(N−2)×(N−2), by defining SN : C(N−2)×(N−2) → C(N−2)×(N−2) by

SN [T ] = diag(S1[diag(T )], . . . ,SN−2[diag(T )]).

In fact, one can check that SN is the same as the operator SN defined in (4.3.1). Then we consider

the problem

Id +(z Id−AN (u) + SN [MN (u, z)])MN (u, z) = 0 subject to ImMN (u, z) > 0. (4.3.7)

But now MN (u, z) := diag(m(u, z)) exhibits a solution to (4.3.7), so we can think of µN (u) equiv-

alently as the measure obtained by solving this matrix version of the MDE.

It is easy to show that each SN preserves the cone of positive semidefinite matrices, and that SN

is self-adjoint with respect to the inner product 〈R, T 〉 = Tr(R∗T ). The other regularity properties
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of SN established in Lemma 4.3.3 let us apply [5, Propositions 2.1, 2.2], which give (a) that each

µN (u) admits a density µN (u, ·) with respect to Lebesgue measure; (b) that each µN (u) is supported

in [−κ(u), κ(u)], where κ(u) = supN ‖AN (u)‖ + 2(supN ‖SN‖)
1/2 satisfies supu∈BR(0) κ(u) < ∞

from (4.3.2) and (4.3.6); and (c) that each µN (u, ·) is Hölderian, with a Hölder exponent that is

universal and a Hölder constant that is uniform over u ∈ BR(0). These three conditions ensure

that the densities are bounded, uniformly over u ∈ BR(0), which finishes checking the regularity

assumption (R).

To check (4.3.5), we note that WN = HN (0), and that by the above discussion µN (0) is sup-

ported in [−2
√

supN ‖SN‖, 2
√

supN ‖SN‖]. Then [6, Theorem 2.4, Remark 2.5(v)] gives

P
(
λmin (WN ) 6 −2

√
sup
N
‖SN‖ − 1

)
6

C

N100

for some constant C, which suffices.

Lemma 4.3.5. The measures µ∞(u) discussed in Remark 4.2.2 are well-defined. They admit

densities that are bounded and compactly supported locally uniformly in u, and for each R there

exists κ with

sup
u∈BR(0)

W1(µN (u), µ∞(u)) 6 N−κ. (4.3.8)

Furthermore, there exists C > 0 such that

E[|det(HN (u))|] 6 (C max(‖u‖, 1))N . (4.3.9)

Finally, for every R and ε we have

lim
N→∞

1
N logN log

[
sup

u∈BR(0)
P(dBL(µ̂HN (u), µ∞(u)) > ε)

]
= −∞. (4.3.10)
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Proof. With S ′N as in (4.3.1), consider the following MDE over matrices in C(N−2)×(N−2):

Id +(z Id−A′N (u) + S ′N [M ′N (u, z)])M ′N (u, z) = 0 subject to ImM ′N (u, z) > 0. (4.3.11)

One can check that S ′N preserves the cone of positive semidefinite matrices and that it is self-

adjoint with respect to the inner product 〈R, T 〉 = Tr(R∗T ). Thus this problem has a unique

solution M ′N (u, z).

In fact we can write M ′N (u, z) much more explicitly. In (4.2.6) we wrote an MDE-type problem

for two N -independent scalars m1(u, z) and m2(u, z). Now we prove existence and uniqueness of

solutions to that problem: Since S ′N maps into diagonal matrices, we can see directly from the

MDE (4.3.11) that M ′N (u, z) must be diagonal. By looking at the MDE componentwise, we see

that the entries on the diagonal can only take two values, which we will call m1(u, z) (for the first

N1 − 1 entries) and m2(u, z) (for the last N2 − 1 entries). With this information, writing (4.3.11)

out in components shows that {m1(u, z),m2(u, z)} is a solution to (4.2.6). Uniqueness for (4.2.6)

follows from uniqueness for (4.3.11), since one can check that

M ′N (u, z) = diag

m1(u, z),m1(u, z), . . .︸ ︷︷ ︸
N1−1 times

,m2(u, z),m2(u, z), . . .︸ ︷︷ ︸
N2−1 times


exhibits a solution to (4.3.11) whenever {m1(u, z),m2(u, z)} solves (4.2.6). Thus (4.2.1) tells us

that

1
N − 2 Tr(M ′N (u, z)) = N1 − 1

N − 2 m1(u, z) + N2 − 1
N − 2 m2(u, z) = γm1(u, z) + (1− γ)m2(u, z)

is actually independent of N , and we write µ∞(u) for the measure with this Stieltjes transform.

Using the regularity of S ′N established in Lemma 4.3.3, the same arguments as in the proof of

Lemma 4.3.4 tell us that each µ∞(u) admits a compactly supported Hölderian density µ∞(u, ·) with

respect to Lebesgue measure, and that the support, the Hölder constant, and the Hölder coefficient

can all be taken uniform over u ∈ BR(0).

183



Now we prove the distance estimate (4.3.8). The general result [35, Proposition 3.1] reduces

this problem to estimating the difference between the Stieltjes transforms, and [36, Lemma 3.1]

provides a general technique for doing this, assuming inputs which we verified in Lemmas 4.3.3 and

4.3.4.

The proof of the determinant estimate (4.3.9) follows [36, Lemma 4.4], using (4.3.6). The proof

of the concentration estimate (4.3.10) follows [36, Lemma 4.5].

Lemma 4.3.6. For every ε > 0 and R > 0, we have

lim
N→∞

inf
u∈BR(0)

P(Spec(HN (u)) ⊂ [l(µ∞(u))− ε, r(µ∞(u)) + ε]) = 1 (4.3.12)

and in fact the extreme eigenvalues of HN (u) converge in probability to the endpoints of µ∞(u).

Proof. In the proof of Lemma 4.3.4, we showed that the measures µN are exactly those given by the

MDE for the matrices HN (u). In the same way, one can check that the measures µ∞ are exactly

those given by the MDE for the matrices H ′N (u); this is why we introduced those matrices. The

rest of the argument is exactly as in the proof of [36, Lemma 4.6]: it uses the local law of Alt et

al. [6] to localize the spectrum of H ′N (u) near the support of µ∞(u), then Lemma 4.3.1 to relate

HN to H ′N , and finally (4.3.10) to show that the extreme eigenvalues of HN do not push inside the

support of µ∞(u).

Lemma 4.3.7. With G+ε as defined in [35, (4.5)] and G as defined in (4.2.4), we have that each

G+ε is convex, that G+1 has positive measure, and that

⋃
ε>0
G+ε = G and Ht ∩

(⋃
ε>0
G+ε

)
= Ht ∩ G for all t.

Proof. Convexity for G+ε is proved exactly as in [36, Lemma 4.7].

For simplicity, we restrict ourselves to u in the quarter space

Q = {(u0, u1, u2) : u1 > 0, u2 > 0}.
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For u ∈ Q we have

λmin (AN (u)) = min
{
N

N1
(α1u1 − ξ′1u0), N

N2
(α2u2 − ξ′2u0)

}
> u0 min

{
−2ξ′1
γ
,− 2ξ′2

1− γ

}
=: −κbsgu0.

Combining this with (4.3.5), we find

lim inf
N→∞

λmin (HN (u)) > −κbsgu0 − 2
√

sup
N
‖SN‖ − 1

for u ∈ Q. Along with the convergence in probability of λmin (HN (u)) to l(µ∞(u)) of Lemma 4.3.6,

this shows that G+1 has positive measure.

Finally, we note that the inclusion ∪ε>0G+ε ⊂ G is clear, and that G is closed by [35, Lemma

4.6]. To show the reverse inclusion, write e1 = (1, 0, 0); then for δ > 0 we have AN (u − δe1) >

AN (u)+ κbsg
4 δ Id, so that by the convergence in probability of Lemma 4.3.6 we have l(µ∞(u−δe1)) >

l(µ∞(u)) + κbsg
4 δ. This completes the proof of the equality ∪εG+ε = G. The version intersected

with Ht is an exercise in point-set topology, since ∪εG+ε is convex as a union of nested convex sets,

Ht is a half-space, and their intersection has non-empty interior by the arguments above.

Proof of Theorem 4.2.1. By the discussion after the proof of Lemma 4.3.2, to show (4.2.3) it suffices

to show

lim
N→∞

1
N

log
∫
Ht
e−N

‖u‖2
2 E[|det(HN (u))|] du = sup

u∈Ht
Sbsg[u],

lim
N→∞

1
N

log
∫
R3
e−N

‖u‖2
2 E[|det(HN (u))|] du = sup

u∈R3
Sbsg[u].

This is a direct consequence of [35, Theorem 4.1], whose conditions we have checked in the preceding

lemmas, with the choices α = 1/2, p = 2 (recall N = (N − 2) + 2 is two more than the size of

HN (u)), and D = R3 or D = Ht.
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Similarly, to prove (4.2.5), it suffices to show

lim sup
N→∞

1
N

log
∫
Ht
e−N

‖u‖2
2 E[|det(HN (u))|1HN (u) > 0] du = sup

u∈G∩Ht
Sbsg[u],

lim sup
N→∞

1
N

log
∫
R3
e−N

‖u‖2
2 E[|det(HN (u))|1HN (u) > 0] du = sup

u∈G
Sbsg[u].

This is a direct consequence of [35, Theorem 4.5], whose conditions we have also just checked, with

the same choices of parameters.

Proof of Corollary 4.2.4. Directly from the MDE (4.2.6), we obtain the symmetry

µ∞(−u, λ) = µ∞(u,−λ).

In particular, µ∞(0, λ) is an even function of λ, so its left edge is strictly negative, hence u = 0 is

not an element of Gpure. Since Gpure has the form (−∞,−E∞(p, q, γ)] we conclude −E∞(p, q, γ) < 0.

Since Σmin(t) = constant+supu∈Gpure∩(−∞,t] Sbsg[u] from (4.2.5), we conclude that Σmin(t) stabilizes

at t = −E∞(p, q, γ).

For each ε, consider the half-space

H̃ε = {(u0, u1, u2) ∈ R3 : u0 > −E∞(p, q, γ) + ε}.

By Markov’s and a Kac-Rice argument, we have

P(Crtmin
N ((−E∞(p, q, γ) + ε,∞)) > 1) 6 E[Crtmin

N ((−E∞(p, q, γ) + ε,∞))]]

= f(N1, N2)
∫
H̃ε
e−N

‖u‖2
2 E[|det(HN (u))|1HN (u)>0] du.

In the companion paper [35, (4.5)] we considered a sequence of nested sets G−δ defined by

G−δ = {u ∈ Rm : µ∞(u)((−∞,−δ)) 6 δ}.
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Since µ∞(u) depends only on u0 in the pure case we are currently considering, each G−δ is of the

form G−δ = {u0 × R2 : u0 ∈ Gpure,−δ} for some set Gpure,−δ ⊂ R. In fact, we claim that Gpure,−δ is

an interval of the form

Gpure,−δ = (−∞, f(δ)]. (4.3.13)

Assume this claim momentarily. From the definitions one can see that ∩δ>0G−δ = G, and thus

(4.2.7) tells us that limδ↓0 f(δ) = −E∞(p, q, γ). Hence there exists a small δ = δ(ε) > 0 with

f(δ) < −E∞(p, q, γ) + ε. For this δ we therefore have H̃ε ⊂ (G−δ)c, but we showed in [35, Lemma

4.7] that

lim
N→∞

1
N

log
∫

(G−δ)c
e−N

‖u‖2
2 E[|det(HN (u))|1HN (u)>0] du = −∞

for every δ > 0. This completes the proof, modulo (4.3.13).

Now we prove (4.3.13). Since µ∞((u0, u1, u2)) depends on u0 only, we abuse notation and write

µ∞(u0). Notice that µ∞(u0) is the limiting empirical measure of the random matrix WN + u0BN ,

where

BN = AN (1, 0, 0) = −

 Nξ′1
N1

0

0
Nξ′2
N2


has strictly negative eigenvalues. The Courant-Fischer variational characterization of eigenvalues

gives that, for each i ∈ J1, NK, the ith eigenvalue of WN + u0BN is a non-increasing function of u0.

Thus
1
N

#{i : λi(WN + u0BN ) < −δ}

is almost surely non-decreasing in u0, hence its N → +∞ limit µ∞(u0)((−∞,−δ)) is also non-

decreasing in u0. This shows that G−δ is a single interval containing arbitrarily large negative

values. From its definition and continuity of the map u 7→ µ∞(u) (see the proof of [35, Lemma

4.6]) one can see that it is closed, which completes the proof of (4.3.13).

Remark 4.3.8. We remark briefly on the restriction ξ′′1 > 0 and ξ′′2 > 0, which is equivalent to

“neither a pure (1, q) spin nor a pure (p, 1) spin.” In order to apply our Laplace-method arguments,

we need the measures µ∞(u) to admit densities. We know of two strategies to show that a measure
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induced by the MDE admits a density: Either check that the stability operator S in the MDE is flat

and import results of [5] (which is our strategy here), or “by hand,” meaning manipulate the MDE

in a clever way to show that the solution MN (u, z) satisfies supN,u,z ‖MN (u, z)‖ <∞ (which is our

strategy for the “elastic-manifold” model in [36]).

If min(ξ′′1 , ξ′′2 ) = 0, the stability operators SN and S ′N are not flat: For example, if ξ′′1 = 0, then

SN


T11 0

0 0


 =

0 0

0 Nξ′1ξ
′
2

N1N2
Tr(T11) Id +Nξ′′2

N2
2

diag(T11)

 6> 1
κ(N − 2) Tr(T ).

The missing piece is thus to establish regularity “by hand,” which we do not know how to do for

this model.
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Chapter 5

Large deviations for extreme

eigenvalues of deformed Wigner

random matrices

This chapter is essentially borrowed from [121], which appeared Electronic

Journal of Probability.

5.1 Introduction

5.1.1 Deformed ensembles: typical behavior.

In this paper, our goal is to prove a large deviation principle (LDP) for the largest eigenvalue

of the random matrix

XN = WN√
N

+DN . (5.1.1)

Here WN√
N

lies in a particular class of real or complex Wigner matrices. Specifically, we will ask

that the laws of the entries of WN have sub-Gaussian Laplace transforms with certain variances,

and that these laws satisfy concentration properties. The archetypal examples of this class are the
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Gaussian ensembles (GOE and GUE). We also assume that DN is a deterministic matrix whose

empirical spectral measure tends to a deterministic limit µD and whose extreme eigenvalues tend

to the edges of µD. In all of our proofs we will assume that DN is diagonal, but by rotational

invariance, our results hold for the deformed Gaussian models even when DN is not diagonal. More

details on our assumptions will be given in Section 5.2.

If we write λ1(M) 6 · · · 6 λN (M) for the eigenvalues of a self-adjoint matrix M and µ̂M =
1
N

∑N
i=1 δλi(M) for its empirical measure, it is well-known that

µ̂XN → ρsc � µD,

both almost surely and in expectation, where ρsc is the semicircle law normalized as ρsc(dx) =
1

2π
√

(4− x2)+ dx and µ� ν is the free convolution of the probability measures µ and ν [131, 153].

If µ is a compactly supported measure on R, we write l(µ) and r(µ) for the left and right

endpoints, respectively, of its support. For some special cases of our model, it is known that

λN (XN )→ r(ρsc � µD) almost surely.

New cases will be a corollary of our large deviation principle; see Remark 5.2.6 below for details.

Our model also exhibits edge universality for many choices of DN ; that is, the fluctuations

of λN (XN ), rescaled appropriately, are known to follow the Tracy-Widom distribution. This was

first established by [140] for the deformed GUE, if µ̂DN → µD quickly (d(µ̂DN , µD) = O(N−2/3−ε)

is enough, where d is defined in Equation (5.1.5)) and without outliers. The convergence-rate

assumption was removed by [65], which also allowed a finite number of outliers in a controlled way,

under a technical assumption implying that µD does not decay too quickly near its edges. The

assumption of Gaussianity was removed by [115], under a similar technical assumption on µD.

5.1.2 History of large deviations in random matrix theory.

The history of LDPs for random matrix theory is fairly sparse. The first result, from [42], is
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for the empirical measure of the Gaussian ensembles. The first LDP for the largest eigenvalue of

a random matrix ensemble, namely for the GOE, appeared in [37]. We mention also [79] for the

largest eigenvalue of thin sample covariance matrices, and [54] for the empirical measure and [14]

for the largest eigenvalue of Wigner matrices whose entries have tails heavier than Gaussian.

There are also several results for the large deviations of deformed random matrices. For exam-

ple, the paper [104] studied large deviations of the empirical measure of full-rank deformations of

Gaussian ensembles, making rigorous a prediction from [119]. The largest eigenvalue of a rank-one

deformation of a Gaussian ensemble was studied by [118]; this result was recovered as the time-

one marginal of a large deviation principle for Hermitian Brownian motions in [70]. Finite-rank

deformations, rather than rank-one deformations, were covered in [45].

Our work builds on the recent papers [99] and [102]. These works use techniques discussed

below to establish LDPs for extreme eigenvalues, treating respectively sharp sub-Gaussian Wigner

matrices and the free-convolution model A + UBU∗ (with U Haar orthogonal or Haar unitary).

This method was also adapted in [50] to study joint large deviations of the largest eigenvalue and of

one component of the corresponding eigenvector for rank-one deformations of Gaussian ensembles.

Very recently, [15] adapted this method to study non-sharp sub-Gaussian Wigner matrices; see

Remark 5.2.2 below for a precise explanation of this terminology.

5.1.3 Large deviations for ensembles with full-rank deformations.

In many large-deviations proofs, one wants to tilt measures by a Laplace transform. The insight

of the paper [99] was that the appropriate Laplace transform in our context is the so-called (rank-

one) spherical integral

Ee[eNθ〈e,Me〉]. (5.1.2)

Here M is an N ×N self-adjoint matrix, θ > 0 is the argument of the Laplace transform, and the

integration Ee is over vectors e uniform on the unit sphere SN−1 (we take SN−1 ⊂ RN if M is real,

or SN−1 ⊂ CN if M is complex, so that (5.1.2) is real). If M is a random matrix, then (5.1.2) is a
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random variable. This is a special case of the famous Harish-Chandra/Itzykson/Zuber integral.

For an LDP for the model (5.1.1), we encounter two technical challenges. If we write PN for

the law of XN and EXN for the corresponding expectation (and define EWN
in the obvious way),

then the first challenge is the computation of

lim
N→∞

1
N

logEXN [Ee[eNθ〈e,XNe〉]] = lim
N→∞

1
N

logEe[EWN
[e
√
Nθ〈e,WNe〉] · eNθ〈e,DNe〉]. (5.1.3)

The term EXN [Ee[eNθ〈e,XNe〉]] appears as a normalization constant when tilting the measure, so

its logarithmic asymptotics appear as part of the rate function. To understand these asymptotics

when WN is not Gaussian, we use the method of [99, Lemma 3.2] to understand EWN
[e
√
Nθ〈e,WNe〉]

pointwise for unit vectors e that are delocalized in an appropriate sense. We combine this with the

new result (see Lemma 5.4.4 below)

for θ small enough depending on µD, lim
N→∞

1
N

log
[
Ee[1e delocalizede

Nθ〈e,DNe〉]
Ee[eNθ〈e,DNe〉]

]
= 0.

The qualifier “for θ small enough” means that, via this argument, we can only obtain large-

deviations asymptotics of events that localize λN (XN ) below some critical threshold xc, which

depends on the deformation µD only. We show xc > r(ρsc � µD) with strict inequality except in

degenerate cases, and that xc can be infinite. For example, xc = +∞ when µD is the uniform

measure on an interval. For the Gaussian ensembles, the limit in (5.1.3) is directly computable for

every θ > 0 without recourse to this delocalization problem, so our results for those models are

stronger.

The second difficulty (in some respects the main one) is that we need a concentration result of

the form

lim
N→∞

1
N

logPN (d(µ̂XN , ρsc � µD) > N−κ) = −∞ (5.1.4)

for κ > 0 small enough, where d is defined in (5.1.5). This result is Lemma 5.5.3 below. With

ρsc � µD replaced with E[µ̂XN ], this is standard concentration of linear statistics [103], easily
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extended to our model. To approximate E[µ̂XN ] with ρsc � µD, we use local laws for deformed

ensembles [116, 115, 75]. Our argument is slightly technical, since these local laws let us approximate

E[µ̂XN ], not directly by ρsc � µD, but by a measure close to ρsc � µ̂DN , so several intermediate

comparisons are needed.

The organization of the paper is as follows: In Section 5.2, we state our assumptions and

main result with commentary and examples. In Section 5.3, we provide background on spherical

integrals, introduce the tilted measures, and provide a high-level overview of the technique as well

as proofs of weak-large-deviations upper and lower bounds. These arguments rely on several key

lemmas, the proofs of which make up the remaining three sections. In Section 5.4, we address the

first technical issue discussed above. In Section 5.5, we prove exponential tightness for our model,

then address the second technical issue discussed above. In Section 5.6, we establish properties of

the rate function. Throughout, our results are stated for both the real and complex cases, but we

only give proofs in the real case. The proofs in the complex case require only minor modifications.

Conventions. We use the shorthand β for the symmetry class at hand: β = 1 refers to real

symmetric matrices and β = 2 refers to complex Hermitian matrices. Our norm ‖M‖ on matrices

is the operator norm ‖M‖ = sup‖u‖2=1 ‖Mu‖2. We define

‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
|x− y|

for test functions f : R→ R, and our metric d on probability measures will be the Dudley distance

(also called the bounded-Lipschitz distance), given by

d(µ, ν) = sup
{∣∣∣∣∫ f d(µ− ν)

∣∣∣∣ : ‖f‖Lip + ‖f‖L∞ 6 1
}
. (5.1.5)

Recall that this distance metrizes weak convergence.

Finally, we recall the Stieltjes transform and the Voiculescu R-transform of a compactly sup-

ported probability measure. If µ is a probability measure on R the convex hull of whose support is
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[a, b], then we will normalize its Stieltjes transform Gµ as

Gµ(y) =
∫
µ(dt)
y − t

.

If we write Gµ(a) = limy↑aGµ(y) and Gµ(b) = limy↓bGµ(y), then it can be shown that Gµ is a

bijection from R \ [a, b] to (Gµ(a), Gµ(b)) \ {0}. We will write

Kµ : (Gµ(a), Gµ(b)) \ {0} → R \ [a, b]

for its functional inverse, and write

Rµ(y) = Kµ(y)− 1
y

for its Voiculescu R-transform, which linearizes free convolution: Rµ�ν = Rµ +Rν .

5.2 Main result

5.2.1 Assumptions. We first present our assumptions on DN , which will be made throughout,

even though we will only state them in the presentation of the main results.

Assumption 1. The matrix DN is real, diagonal, and deterministic, and its empirical measure

µ̂DN tends weakly as N →∞ to a compactly supported probability measure µD. Furthermore,

λN (DN )→ r(µD),

λ1(DN )→ l(µD).
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Assumption 2. There exist C > 0 and ε0 > 0 such that

d(µ̂DN , µD) 6 CN−ε0 .

Remark 5.2.1. We emphasize that µD is allowed to be quite poorly behaved. For example, it can

be singular with respect to Lebesgue measure. It can also have disconnected support. Notice that

Assumption 2 is fairly mild. For example, if µD has a density and the entries of DN are the 1
N -

quantiles of µD, then in fact d(µ̂DN , µD) = O( 1
N ). If the entries of DN were obtained from i.i.d.

random variables, we would have d(µ̂DN , µD) = O( 1√
N

).

In fact, the proof of Lemma 5.5.6 below shows that, instead of Assumption 2, it suffices to bound

the difference between the Stieltjes transforms of µ̂DN and µD at distance N−δ from the real line,

for δ > 0 small enough.

We will write the Laplace transform of a measure µ on C as

Tµ(t) :=
∫
e<(zt)µ(dz).

If in fact µ is supported on R and t is real, this reduces to the familiar

Tµ(t) =
∫
etxµ(dx).

We assume that WN√
N

is a Wigner matrix, by which we mean that its entries are independent

up to the self-adjoint condition. Our assumptions on the Wigner part are named, rather than

numbered, to emphasize that our results apply under either of them, rather than both of them.

Gaussian Hypothesis. The matrix WN√
N

is distributed according to the Gaussian Orthogonal

Ensemble if β = 1, or the Gaussian Unitary Ensemble if β = 2. (That is, the law of WN on the

space of symmetric/Hermitian matrices has density proportional to exp(−β tr(W 2
N )/4).)

SSGC Hypothesis. (This labelling stands for “sharp sub-Gaussian and concentrates.” It matches

the assumptions of [99].)
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Write µNi,j for the law of the (i, j)th entry of WN .

1. Assume both of the following.

– The first and second moments match those of the relevant Gaussian ensemble. In our

normalization, this means that for every N ∈ N and i, j ∈ J1, NK, if β = 1 we have

∫
xµNi,j(dx) = 0,

∫
x2µNi,j(dx) = 1 + δij ,

whereas if β = 2 and i 6= j we have

∫
<(z)µNi,j(dz) =

∫
=(z)µNi,j(dz) =

∫
<(z)=(z)µNi,j(dz) = 0,∫

<(z)2µNi,j(dz) =
∫
=(z)2µNi,j(dz) = 1

2 .

If β = 2, then µNi,i is supported on R, with
∫
xµNi,i(dx) = 0 and

∫
x2µNi,i(dx) = 1.

– For every N ∈ N and i, j ∈ J1, NK, the measure µNi,j has a sharp sub-Gaussian Laplace

transform:

for all


t ∈ R if β = 1

t ∈ C if β = 2
, TµNi,j

(t) 6 exp
(
|t|2(1 + δij)

2β

)
. (5.2.1)

2. In addition, assume one of the following concentration-type hypotheses.

– There exists a constant c independent of N such that, for all N ∈ N and all i, j ∈ J1, NK,

the law µNi,j satisfies a log-Sobolev inequality with constant c.

– There exists a compact set K independent of N (real if β = 1, or complex if β = 2) such

that, for all N ∈ N and all i, j ∈ J1, NK, the law µNi,j is supported in K.

Remark 5.2.2. A list of examples satisfying the SSGC Hypothesis is provided in [99]. Among these

examples are real matrices whose entries follow the Rademacher law 1
2(δ−1 + δ+1) or the uniform

law on [−
√

3,
√

3] (appropriately rescaled on the diagonal).
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In the literature, it is common to call a centered measure µ on R with unit variance sub-Gaussian

whenever

A := 2 sup
t∈R

1
t2

log Tµ(t)

is finite. We emphasize that we are asking for more: in (5.2.1) we require A = 1 (off the diagonal,

with appropriate modifications otherwise), and following [99] we call such measures sharp sub-

Gaussian. This is a strict subclass; for example, the law of 1
pBG, where B ∼ Bernoulli(p) and

G ∼ N (0, 1) are independent, has unit variance but A = 1/p. This example appears in [15], which

treats the general case A > 1, with zero deformation.

5.2.2 Main result

Definition 5.2.3. For a compactly supported measure ν, a parameter θ > 0, and a real number

M > r(ν), define

J (β)(ν, θ,M ) =


β
2
∫ 2
β
θ

0 Rν(t) dt if 0 6 2
β θ 6 Gν(M ),

θM − β
2

[
1 + log

(
2
β θ
)]
− β

2
∫

log(M − y)ν(dy) if 2
β θ > Gν(M ).

(5.2.2)

(If M = r(ν), we recall our convention Gν(r(ν)) = limy↓r(ν)Gν(y), which is possibly infinite.)

In Section 5.3.1 we will explain how this function arises as the limit of appropriately normalized

spherical integrals.

For x > r(ρsc � µD) and θ > 0, we define

I(β)(x, θ) = J (β)(ρsc � µD, θ, x)− θ2

β
− J (β)(µD, θ, r(µD))

and then set

I(β)(x) =


+∞ if x < r(ρsc � µD),

supθ>0 I
(β)(x, θ) if x > r(ρsc � µD).
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We will show below that

I(2)(x) = 2I(1)(x)

for all measures µD.

To state our result, we will need the following critical threshold.

Definition 5.2.4. Given the compactly supported measure µD, define the real number xc by

xc = xc(µD) =


r(µD) +GµD(r(µD)) if GµD(r(µD)) < +∞,

+∞ otherwise.

It will be shown in Proposition 5.6.1 below that xc > r(ρsc � µD), with equality if and only if an

inequality involving the Stieltjes transform of µD degenerates.

The main result of the paper is the following:

Theorem 5.2.5. Suppose that Assumptions 1 and 2 hold.

1. If the Gaussian Hypothesis holds, then the law of the largest eigenvalue λN (XN ) satisfies

a large deviation principle at speed N with the good rate function I(β)(x). By rotational

invariance, we have the same result when DN is not diagonal but simply symmetric (if β = 1)

or Hermitian (if β = 2) and satisfies the rest of the requirements of Assumption 1.

2. If instead the SSGC Hypothesis holds, then the law of the largest eigenvalue λN (XN ) satisfies

what we will call a “restricted large deviation principle on (−∞, xc)” at speed N with the good

rate function I(β)(x). In fact the restriction is just for the lower bound; the upper bound is

unrestricted. This means the following:

– For every closed set F ⊂ R, we have

lim sup
N→∞

1
N

logPN (λN (XN ) ∈ F ) 6 − inf
x∈F

I(β)(x). (5.2.3)
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– For every open set G ⊂ (−∞, xc), we have

lim inf
N→∞

1
N

logPN (λN (XN ) ∈ G) > − inf
x∈G

I(β)(x). (5.2.4)

3. In particular, if the SSGC Hypothesis holds and µD is such that xc = +∞, then the law of

the largest eigenvalue λN (XN ) satisfies a large deviation principle at speed N with the good

rate function I(β)(x) in the usual sense.

Remark 5.2.6. See Proposition 5.6.1 below for a more in-depth study of the function I(β)(x).

There, it is shown that I(β)(x) has a unique minimizer at x = r(ρsc�µD), where it takes the value

zero. In particular, if the Gaussian Hypothesis holds, or if the SSGC Hypothesis holds and µD is

such that xc = +∞, then

λN (XN )→ r(ρsc � µD) almost surely. (5.2.5)

This result appears to be new in the real case when ρsc � µD is multicut, and in the complex non-

Gaussian case when ρsc�µD is multicut and (DN )∞N=1 has “internal outliers” between the connected

components of supp(µD) that persist as N → ∞. (Recall that we forbid “external outliers” by

assuming λN (DN ) → r(µD) and λ1(DN ) → l(µD).) In the literature Equation (5.2.5) appears as

an easy corollary of edge universality results, or as a special case of BBP results when the deforming

matrix DN has no external outliers. For example, it follows from [65] for deformed GUE, possibly

multicut with internal outliers, under some assumptions about the decay rate of µD near its edges;

from [115] for general real or complex noise if µD is such that ρsc � µD is supported on a single

interval with square-root decay at its two edges; and from [33] in the complex (and possibly multicut)

case with no outliers. Of course, all of these papers achieve much more.

Remark 5.2.7. The proof of the “restricted LDP,” i.e., of Equations (5.2.3) and (5.2.4), fol-

lows in the classical way from estimates of small-ball probabilities via a weak large deviation

principle and exponential tightness, except that we can only lower-bound small-ball probabilities
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PN (|λN (XN )− x| < δ) for x < xc rather than x ∈ R. However, we can upper-bound these proba-

bilities for all x (see Theorem 5.3.4); this is the reason for the different restrictions on F and G in

(5.2.3) and (5.2.4).

Remark 5.2.8. Of course, one would prefer to write the rate function non-variationally, and

we can do this when the argument is at or above the critical threshold xc(µD). Proposition 5.6.1

shows that, for all x > r(ρsc � µD), the supremum in the definition of I(β)(x) is achieved at a

unique θ(β)
x . For x > xc (which is relevant for the Gaussian case), this θ(β)

x is given explicitly as

θ
(β)
x = β

2 (x− r(µD)); thus if x > xc(µD),

I(β)(x) = β

2

[
(x− r(µD))2

2 −
∫

log(x− y)(ρsc � µD)(dy) +
∫

log(r(µD)− y)µD(dy)
]
.

(If xc(µD) < ∞, then
∫

log(r(µD) − y)µD(dy) < ∞.) But for subcritical x values, θ(β)
x is defined

implicitly in the proof of Proposition 5.6.1 as the unique solution of the constrained problem

2
β
θ(β)
x +KµD

( 2
β
θ(β)
x

)
= x subject to θ(β)

x ∈
(
β

2Gρsc�µD(r(ρsc � µD)), β2GµD(r(µD))
)
. (5.2.6)

We have not found a way to solve this constrained problem explicitly, nor to write I(β)(x, θ(β)
x ) explic-

itly at its solution. If the domain of θ(β)
x in the constraint were instead (0, β2Gρsc�µD(r(ρsc�µD))),

the equation would simplify to Kρsc�µD( 2
β θ

(β)
x ) = x, which has the solution θ

(β)
x = β

2Gρsc�µD(x).

But Kρsc�µD(·) is not generally guaranteed to exist for arguments larger than Gρsc�µD(r(ρsc�µD)),

and even when extendable it may not be globally invertible.

Thus our rate function remains implicit for subcritical x values. Nevertheless, in some simple

cases the constrained problem can be solved explicitly; two examples are given below in Sections

5.2.3 and 5.2.4.
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Remark 5.2.9. If DN = 0, then xc = +∞,

I(β)(x) =


+∞ if x < 2

supθ>0

{
J (β)(ρsc, θ, x)− θ2

β

}
if x > 2

=


+∞ if x < 2

β
2
∫ x
2
√
t2 − 4 dt if x > 2,

and we recover [99, Theorems 1.5 and 1.6], which in particular includes the classical LDP for the

Gaussian ensembles. (The last equality in the above display is true by [99, Section 4.1].) Notice

that we get the same rate function if DN is not identically zero but rather ‖DN‖ → 0 sufficiently

quickly.

Remark 5.2.10. One wants to recover large deviations for BBP-type problems, so it is tempting

to conjecture that, if the largest eigenvalue of DN tends not to r(µD) but to some ρ > r(µD), then

an LDP should hold for λN (XN ) at speed N with the good rate function

Ĩ(β)(x) =


+∞ if x < r(ρsc � µD)

supθ>0{J (β)(ρsc � µD, θ, x)− θ2

β − J
(β)(µD, θ, ρ)} otherwise.

But, at least for certain simple situations, such a conjecture would be wrong. For example, suppose

that WN√
N

is distributed according to the GOE (if β = 1) or the GUE (if β = 2), that µD = δ0

(so that ρsc � µD = ρsc), and that DN has N − 1 zero eigenvalues with one spike at, say, 2 for

concreteness. Then it is known [118, Theorem 1.2] that λN (XN ) satisfies an LDP at speed N with

the good rate function

Î(β)(x) =


+∞ x < 2

β
4
∫ x

5
2

√
z2 − 4 dz − β

(
x− 5

2

)
+ β

8

[
x2 −

(
5
2

)2
]

x > 2.

(The published rate function has a typo; it is corrected in the v2 arXiv posting. We also normalize

the semicircle law differently.) Notice that this vanishes uniquely at x = 5
2 , which lies outside
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supp(ρsc) – this model is past the BBP phase transition. But in this situation we can compute

Ĩ(β)(x) =



+∞ x < 2

0 2 6 x 6 5
2

Î(β)(x) x > 5
2

It is likely that our method could be extended as in [102] to models where limN→∞ λN (DN ) is a

spike below the BBP threshold, i.e., such that still λN (XN ) → r(ρsc � µD) almost surely. But a

new idea is needed beyond the BBP threshold.

5.2.3 First example (xc <∞). If

µD(dx) = 1
2πσ2

√
4σ2 − x21x∈[−2σ,2σ] dx

for some parameter σ > 0, then ρsc � µD is again semicircular, scaled so its support lies in

[−2
√
σ2 + 1, 2

√
σ2 + 1]. The constrained equation (5.2.6) can be solved explicitly, and writing

r = r(ρsc � µD) = 2
√
σ2 + 1 and xc = 2σ + 1

σ we can calculate

I(β)(x) =



+∞ if x < r

β

[
x
√
x2−4(1+σ2)
4(1+σ2) + log

(
2
√

1+σ2

x+
√
x2−4(1+σ2)

)]
if r 6 x 6 xc

β

[
(x−2σ)2

4 + x
√
x2−4(1+σ2)−x2

8(1+σ2) + 1
2 log

(
2σ

x+
√
x2−4(1+σ2)

)
+ 1

2

]
if x > xc.

Notice that I(β)(x) is C2 but no better at xc, which is perhaps surprising. Figure 5.1 plots this

function when β = 1 and σ = 1 (i.e., when µD is the usual semicircle law supported on [−2, 2]).

Here r(ρsc � µD) = 2
√

2 ≈ 2.83, xc = 3, and I(β)(xc) ≈ 0.03 · β. Under the SSGC Hypothesis, we

would be able to estimate, say, PN (λN ∈ (2.9, 2.95)) but not PN (λN ∈ (2.9, 3.1)).
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I(1)(x)

x

1
4

1
2

3
4

3 7
2

4

+∞

r(ρsc � µD) ≈ 2.83

xc = 3

Figure 5.1: Sketch of the rate function when β = 1 and µD = ρsc.

5.2.4 Second example (xc =∞). Now suppose

µD = 1
2(δ−a + δ+a)

for some parameter a > 0. Here xc(µD) = a + GµD(a) = +∞, so all x are subcritical; that is,

we can estimate any probability PN (λN ∈ A) under either the SSGC Hypothesis or the Gaussian

Hypothesis. Our computations use the known result

r(ρsc � µD) = (4a2 − 1 +
√

8a2 + 1)3/2

2
√

2a(
√

8a2 + 1− 1)
=: r(a). (5.2.7)

In the physics literature this dates back to [157, Equations (55), (56)]; it was established in the

mathematical literature in [51, Equations (3.5), (3.6)] (for a > 1), [8, Section 1] (for a < 1), and

[52, Section 7] (for a = 1). The latter three papers establish that the measure ρsc � µD undergoes

a phase transition at a = 1. When a > 1, the support of ρsc � µD consists of two intervals; when

a = 1, these intervals meet at zero, where the density has cubic-root decay; and when a < 1 the

support is a single interval, on the interior of which the density is strictly positive. (This set of

three papers also establishes universality of correlation functions.) We emphasize that our results

apply to all a > 0.
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The details of the computations are given in Appendix C, but the result is this: With

c(a) = (−1 + 4a2 +
√

1 + 8a2)3/2

3
√

2a(−1 +
√

1 + 8a2)
−

√
(1 + 8a2)(−1− 4a2 + 8a4 +

√
1 + 8a2)

3
√

2a(−1 +
√

1 + 8a2)
, (5.2.8)

d(y) = d(a, y) = 9y + 18a2y − 2y3√
−4(3− 3a2 − y2)3 − (9y + 18a2y − 2y3)2 , (5.2.9)

we have

I(β)(x) = β

4

[[2
3

[
x−

√
−3 + 3a2 + x2 sin

(1
3 arctan(d(x))

)]]2

+ log

(x
3 +

[
2
√
−3 + 3a2 + x2

3 sin
(1

3 arctan(d(x))
)])2

− a2


− 2

∫ x

r(a)

2
3

[
t−

√
−3 + 3a2 + t2 sin

(
π

3 −
1
3 arctan(d(t))

)]
dt

− (c(a)2 + log((r(a)− c(a))2 − a2))
]

for x > r(ρsc � µD). Figure 5.2 plots this function at the critical parameter a = 1 (so that

r(ρsc � µD) = 3
√

3
2 ) when β = 1.

I(1)(x)

x

+∞

r(ρsc � µD) ≈ 2.60

1
4

1
2

3
4

5
2

3 7
2

Figure 5.2: Sketch of the rate function when β = 1 and µD = 1
2(δ1 + δ−1).

Question 5.2.11. Does the mechanism driving the deviations {λN (XN ) ≈ x} change as x passes
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the critical threshold xc? Specifically, can one formalize and prove the notion that, with large prob-

ability, while the eigenvector corresponding to λN is delocalized under the above event for subcritical

x values, it localizes for supercritical x values?

5.3 Proof overview

5.3.1 Spherical integrals. Given a self-adjoint N ×N matrix X and θ > 0, consider

I
(β)
N (X, θ) = Ee,β[eNθ〈e,Xe〉],

J
(β)
N (X, θ) = 1

N
log I(β)

N (X, θ).

Recall that Ee,β is integration over vectors e uniform on the unit sphere, understood as SN−1 ⊂ RN

if β = 1 or SN−1 ⊂ CN if β = 2, so that I(β)
N (X, θ) is real and nonnegative for both symmetry

classes. We emphasize again that Ee,β only averages over the unit sphere, so if X is random then

I
(β)
N (X, θ) and J (β)

N (X, θ) are random variables.

If {XN} is such that µ̂XN has a weak limit ν, then we might hope that J (β)
N (XN , θ) also has a

limit depending on ν and θ. This is so; but the limit also depends on λN (XN ) if θ is sufficiently

large. This should not be surprising, since the integrand eNθ〈e,Xe〉 is maximized near the eigenvector

corresponding to λN (X), especially for larger θ values. Indeed, we have the following result.

Proposition 5.3.1. [101, Theorem 6] Suppose that the sequence (AN )∞N=1 of self-adjoint matrices

is such that µ̂AN → ν weakly for some compactly-supported measure ν, that λ1(AN ) has a finite

limit, and that λN (AN )→M for some real number M . (Notice that we are not assuming that M

is the right edge of ν, but of course we must have M > r(ν).) If θ > 0, then

lim
N→∞

J
(β)
N (AN , θ) = J (β)(ν, θ,M ),
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where J (β)(ν, θ,M ) is as in (5.2.2).

5.3.2 Tilted measures and weak large deviations. Our general strategy will be to show a

weak large deviation principle, as well as exponential tightness. In the proof of the weak-large-

deviations lower bound for our measure of interest, we will actually need a weak-large-deviations

upper bound for the following family of measures.

Definition 5.3.2. Given θ > 0, we consider the “tilted” measure PθN on N×N matrices (symmetric

if β = 1, or Hermitian if β = 2) whose density with respect to the law PN of XN is given by

dPθN
dPN

(X) = I
(β)
N (X, θ)

EXN (I(β)
N (XN , θ))

.

Notice from the definition of I(β)
N that P0

N = PN .

We will need the following asymptotics of the free energy for this measure, with proof in Section

5.4.

Proposition 5.3.3. Given the compactly supported measure µD, define the threshold

θ(β)
c = θ(β)

c (µD) =


β
2GµD(r(µD)) if GµD(r(µD)) < +∞,

+∞ otherwise.
(5.3.1)

Under the Gaussian Hypothesis, choose any θ > 0; or, under the SSGC Hypothesis, choose any

0 6 θ < θ
(β)
c . Then

lim
N→∞

1
N

logEXN [I(β)
N (XN , θ)] = θ2

β
+ J (β)(µD, θ, r(µD)).

The reason for the appearance of θ(β)
c and xc is this: Under the SSGC Hypothesis, we can only

give lower bounds for EXN [eNθ〈e,XNe〉] = eNθ〈e,DNe〉EWN
[e
√
Nθ〈e,WNe〉] when e is delocalized, since

we only have lower bounds for the Laplace transforms of the entries of WN near zero. Informally,
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to understand the normalization constant in PθN we therefore need θ to be such that

Ee,β[1e delocalizede
Nθ〈e,DNe〉] ≈ Ee,β[eNθ〈e,DNe〉]

at exponential scale, which we can only prove for θ < θ
(β)
c (in fact it probably fails for larger θ).

To establish the weak LDP lower bound, we need to show that the event {λN (XN ) ≈ x} is likely

under PθN for some θ = θx. Under the SSGC Hypothesis, this is possible only if x is such that

θx < θ
(β)
c , and this turns out to be true if and only if x < xc, where xc is as in Definition 5.2.4.

We split up the weak-large-deviations upper and lower bounds as follows:

Theorem 5.3.4. First, let x < r(ρsc � µD). Under either Hypothesis, choose any θ > 0. Then

lim
δ→0

lim sup
N→∞

1
N

logPθN (|λN (XN )− x| 6 δ) = −∞.

Second, let x > r(ρsc � µD). Under the Gaussian Hypothesis, choose any θ > 0; or, under the

SSGC Hypothesis, choose any 0 6 θ < θ
(β)
c . Then

lim sup
δ→0

lim sup
N→∞

1
N

logPθN (|λN (XN )− x| 6 δ) 6 −(I(β)(x)− I(β)(x, θ)).

Notice that I(β)(x, 0) = 0 for all measures µD and all x > r(ρsc�µD). Thus when θ = 0 we recover

the weak large deviation upper bound for the measure of primary interest, under either Hypothesis.

Theorem 5.3.5. Under the Gaussian Hypothesis, choose any x ∈ R; or, under the SSGC Hypoth-

esis, choose any x < xc. Then

lim inf
δ→0

lim inf
N→∞

1
N

logPN (|λN (XN )− x| < δ) > −I(β)(x).

5.3.3 Outline. When estimating 1
N logPN (|λN (XN )− x| 6 δ) by tilting by spherical integrals,

one wants to estimate J (β)
N (XN , θ) on the event {|λN (XN )− x| 6 δ}. To localize J (β)

N (XN , θ), one
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needs to control µ̂XN . Therefore one wants to find a set

AMx,δ ⊂ {|λN (XN )− x| 6 δ}

of matrices with controlled empirical measures (which will turn out to depend on some M � 1)

satisfying both of the following:

– On the one hand, AMx,δ is a continuity set for spherical integrals, in the sense that we have a

good enough understanding of J (β)
N (T, θ) for T ∈ AMx,δ to be able to estimate

1
N

logPN (AMx,δ) ≈ e−NI
(β)(x).

– On the other hand, AMx,δ is not too much smaller than {|λN (XN )− x| 6 δ}, in the sense that

1
N

logPN (|λN (XN )− x| 6 δ) ≈ 1
N

logPN (AMx,δ).

The next subsection first details the continuity result of [118], which helps us choose AMx,δ while

satisfying the first point, then states a proposition which we need to show that our choice satisfies

the second point.

5.3.4 Continuity of spherical integrals

Proposition 5.3.6. [118, Proposition 2.1] For any θ > 0 and any κ > 0, there exists a function

gκ,θ : R+ → R+ going to zero at zero such that, for any δ > 0 and N large enough, if BN and B′N are

sequences of matrices such that d(µ̂BN , µ̂B′N ) < N−κ, |λN (BN )− λN (B′N )| < δ, supN ‖BN‖ < ∞,

and supN ‖B′N‖ <∞, then we have

∣∣∣J (β)
N (BN , θ)− J (β)

N (B′N , θ)
∣∣∣ < gκ,θ(δ).

This suggests that we introduce the following deterministic sets of N ×N symmetric matrices.
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Fix once and for all a κ satisfying Proposition 5.3.9, below, and write gθ for gκ
2 ,θ

; then for any

x ∈ R, δ > 0, and M > 0, let

AMx,δ = {X : |λN (X)− x| < δ, d(µ̂X , ρsc � µD) < N−κ, and ‖X‖ 6M}.

In the next few results, we discretize the measure ρsc � µD so that we can apply Proposition

5.3.6 and control J (β)
N (XN , θ) uniformly for XN ∈ AMx,δ.

Lemma 5.3.7. Fix x > r(ρsc�µD) and M > max(x, |l(ρsc � µD)|). Then there exists a sequence

of deterministic matrices B′N with the following properties:

– λN (B′N ) = x,

– supN>1 ‖B′N‖ 6M , and

– d(µ̂B′N , ρsc � µD) = O(1/N).

Proof. Given N , define the 1
N quantiles {γj}Nj=1 = {γ(N)

j }Nj=1 of the measure ρsc�µD implicitly by

j

N
= (ρsc � µD)((−∞, γj)).

(This is possible since ρsc � µD admits a density [49, Corollary 2].) Then let

B′N = diag(γ1, . . . , γN−1, x).

The distance estimate is easy to show, since d(·, ·) is defined with respect to bounded-Lipschitz test

functions.

Corollary 5.3.8. For every θ > 0, x > r(ρsc � µD), δ > 0, and M > max(x + δ, |l(ρsc � µD)|),

we have

lim sup
N→∞

sup
BN∈AMx,δ

∣∣∣J (β)
N (BN , θ)− J (β)(ρsc � µD, θ, x)

∣∣∣ 6 gθ(δ).
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Proof. Let {B′N}∞N=1 be as in Lemma 5.3.7, so that d(µ̂B′N , ρsc � µD) 6 N−κ for N sufficiently

large, with κ fixed as above. Then whenever BN ∈ AMx,δ we have d(µ̂BN , µ̂B′N ) 6 2N−κ 6 N−
κ
2 ,

and |λN (BN )− λN (B′N )| 6 δ, so that by Proposition 5.3.6 and by our definition of gθ

sup
BN∈AMx,δ

∣∣∣J (β)
N (BN , θ)− J (β)

N (B′N , θ)
∣∣∣ 6 gθ(δ)

for N sufficiently large. In addition, by Proposition 5.3.1 we have

lim
N→∞

∣∣∣J (β)
N (B′N , θ)− J (β)(ρsc � µD, θ, x)

∣∣∣ = 0.

The result follows.

On the other hand, the result below shows that the restrictions we added to {X : |λN (X)− x| <

δ} to arrive at AMx,δ have probability negligibly close to 1 at the exponential scale. Notice that the

first point is exponential tightness. The proof will make up Section 5.5.

Proposition 5.3.9. Assume either the Gaussian Hypothesis or the SSGC Hypothesis.

1. For every θ > 0 we have

lim
M→∞

lim sup
N→∞

1
N

logPθN (‖XN‖ > M) = −∞.

2. There exists γ > 0 such that, for any 0 < κ < γ and any θ > 0,

lim
N→∞

1
N

logPθN (d(µ̂XN , ρsc � µD) > N−κ) = −∞.

Theorem 5.2.5 follows in the classical way from the exponential tightness above, the weak LDP

upper bound (Theorem 5.3.4), and the weak LDP lower bound (Theorem 5.3.5). We now prove

the latter two.
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5.3.5 The proof of the weak LDP upper bound

Lemma 5.3.10. Fix y > r(ρsc � µD) and M > max(y, |l(ρsc � µD)|). Under the Gaussian Hy-

pothesis, choose any θ > 0; or, under the SSGC Hypothesis, choose any 0 6 θ < θ
(β)
c . Then

lim sup
δ→0

lim sup
N→∞

1
N

logPθN (AMy,δ) 6 −(I(β)(y)− I(β)(y, θ)).

Proof. For any θ′ > 0, we have

PθN (AMy,δ) = 1
EXN [I(β)

N (XN , θ)]
EXN

[
1XN∈AMy,δI

(β)
N (XN , θ)

I
(β)
N (XN , θ

′)
I

(β)
N (XN , θ′)

]

6
EXN [I(β)

N (XN , θ
′)]

EXN [I(β)
N (XN , θ)]

 sup
X∈AM

y,δ

I
(β)
N (X, θ)

 sup
X∈AM

y,δ

1
I

(β)
N (X, θ′)

.
Fix ε > 0. By Corollary 5.3.8 and Lemmas 5.4.1 (applied to θ′, which is any nonnegative number,

hence the need for Lemma 5.4.1) and 5.4.2 (applied to θ, which is subcritical if necessary), if

M > y + δ (true for small enough δ since M > y) and for N sufficiently large depending on θ, θ′,

and ε, we thus have

1
N

logPθN (AMy,δ) 6 I(β)(y, θ)− I(β)(y, θ′) + 2gθ(δ) + 2gθ′(δ) + ε.

By taking N →∞, then δ ↓ 0, then ε ↓ 0, we obtain

lim sup
δ↓0

lim sup
N→∞

1
N

logPθN (AMy,δ) 6 −(I(β)(y, θ′)− I(β)(y, θ))

which gives us the result by optimizing over θ′.

Proof of Theorem 5.3.4. We first focus on the case when x < r(ρsc � µD). For such an x, if δ is

so small that x + δ < r(ρsc � µD) − δ, then whenever |λN (XN )− x| 6 δ, the empirical spectral

measure µ̂XN does not charge (r(ρsc � µD) − δ, r(ρsc � µD)). Hence d(µ̂XN , ρsc � µD) > f(δ) for
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some positive function f . Thus for such δ and for N large enough we have

1
N

logPθN (|λN (XN )− x| 6 δ) 6 1
N

logPθN
(
d(µ̂XN , ρsc � µD) > N−κ

)

which suffices in light of Proposition 5.3.9. Thus in the following it remains only to consider

x > r(ρsc � µD).

Fix θ > 0, δ > 0, x > r(ρsc � µD), and a sufficiently large M . Then we have

PθN (λN ∈ [x− δ, x+ δ]) 6 PθN (AMx,2δ) + PθN (d(µ̂XN , ρsc � µD) > N−κ) + PθN (‖XN‖ > M).

An application of Proposition 5.3.9 gives us

lim sup
N→∞

1
N

logPθN (λN ∈ [x− δ, x+ δ])

6 max
(

lim sup
N→∞

1
N

logPθN (AMx,2δ), lim sup
N→∞

1
N

logPθN (‖XN‖ > M)
)
.

By taking δ ↓ 0 and applying Lemma 5.3.10, we obtain

lim sup
δ↓0

lim sup
N→∞

1
N

logPθN (λN ∈ [x− δ, x+ δ])

6 max
(
−(I(β)(x)− I(β)(x, θ)), lim sup

N→∞

1
N

logPθN (‖XN‖ > M)
)
.

Finally we obtain the result by taking M →∞ and applying again Proposition 5.3.9.

5.3.6 The proof of the weak LDP lower bound. The following lemma relies on results about

the rate function which will be established in Section 5.6.

Lemma 5.3.11. Under the Gaussian Hypothesis, choose any x > r(ρsc�µD); or, under the SSGC

Hypothesis, choose any r(ρsc � µD) 6 x < xc. Then there exists θ(β)
x > 0 such that, for any M
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sufficiently large depending on x and any δ > 0 sufficiently small depending on x, we have

lim
N→∞

1
N

logPθ
(β)
x
N (AMx,δ) = 0.

If x < xc, then θ(β)
x < θ

(β)
c .

Proof. Fix x > r(ρsc � µD), and let θ(β)
x be such that

I(β)(x) = sup
θ>0

I(β)(x, θ) = I(β)(x, θ(β)
x ).

Proposition 5.6.1 below shows that this exists and is unique (except at x = r(ρsc � µD), where we

choose one of many possible θ(β)
x values by convention), and that θ(β)

x < θ
(β)
c whenever x < xc. We

claim that in fact Pθ
(β)
x
N (AMx,δ) = 1− o(1); to prove this, by Proposition 5.3.9 it suffices to show

lim sup
N→∞

1
N

logPθ
(β)
x
N (λN 6∈ [x− δ, x+ δ]) < 0

for δ small enough. Since {λN < r(ρsc � µD)− 1} ⊂ {d(µ̂XN , ρsc � µD) > ε} for some ε, and since

the law of λN is exponentially tight under PθxN , we need only show that for K large enough

lim sup
N→∞

1
N

logPθ
(β)
x
N (λN ∈ [r(ρsc � µD)− 1, x− δ] ∪ [x+ δ,K]) < 0.

But Theorem 5.3.4 shows a weak large deviation upper bound for Pθ
(β)
x
N with the rate function

J
(β)
x (y) = I(β)(y) − I(β)(y, θ(β)

x ), which Proposition 5.6.1 below shows is nonnegative and vanishes

uniquely at y = x. (This theorem applies, since θ(β)
x is less than θ(β)

c if necessary.) Since [r(ρsc �

µD)− 1, x− δ] ∪ [x+ δ,K] is a compact set that does not contain x, this suffices.

Proof of Theorem 5.3.5. If x < r(ρsc � µD), then I(β)(x) = +∞, and there is nothing to prove.

Thus we will assume in the following that x > r(ρsc � µD).
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Whenever X ∈ AMx,δ, by Corollary 5.3.8 we have

J
(β)
N (X, θ(β)

x ) 6 2g
θ
(β)
x

(δ) + J (β)(ρsc � µD, θ
(β)
x , x)

for N sufficiently large. In addition, for every ε > 0, Lemma 5.3.11 tells us that for N sufficiently

large depending on ε we have Pθ
(β)
x
N (AMx,δ) > e−Nε.

We wish to use Proposition 5.3.3 to conclude that, for N sufficiently large depending on ε and

on θ(β)
x , we also have

EXN [IN (XN , θ
(β)
x )] > eN( θ

2
β

+J(β)(µD,θ
(β)
x ,r(µD))−ε)

.

Under the Gaussian Hypothesis, this is permissible for every x; under the SSGC Hypothesis, our

restriction x < xc tells us by Lemma 5.3.11 that θ(β)
x < θ

(β)
c , so that Proposition 5.3.3 indeed

applies.

Thus

PN (AMx,δ) >
EXN [1XN∈AMx,δI

(β)
N (XN , θ

(β)
x )]

EXN [I(β)
N (XN , θ

(β)
x )]

EXN [I(β)
N (XN , θ

(β)
x )]e

−N sup
X∈AM

x,δ
J

(β)
N (X,θ(β)

x )

> Pθ
(β)
x
N (AMx,δ)e

N( (θ(β)
x )2

β
+J(β)(µD,θ

(β)
x ,r(µD))−ε)

e
−N sup

X∈AM
x,δ

J
(β)
N (X,θ(β)

x )

> e−NεeN(( θ
(β)
x )2

β
+J(β)(µD,θ

(β)
x ,r(µD))−ε)

e
−N(J(β)(ρsc�µD,θ

(β)
x ,x)+2g

θ
(β)
x

(δ))

= e
−N(I(β)(x)+2ε+2g

θ
(β)
x

(δ))
.

Thus, fixing some M sufficiently large, we obtain

lim inf
N→∞

1
N

logPN (|λN (XN )− x| < δ) > lim inf
N→∞

1
N

logPN (AMx,δ) > −(I(β)(x) + 2ε+ 2g
θ
(β)
x

(δ))

and since this is true for every ε > 0 we can take the limit as δ ↓ 0 to conclude.
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5.4 Free energy expansion

In this section we prove Proposition 5.3.3, recalling that we state the results for β ∈ {1, 2} but give

proofs only for β = 1. (In particular, in the proofs we drop β from notations, writing IN (·, ·) for

I
(β)
N (·, ·) and so on.)

Proof under the Gaussian Hypothesis. For the remainder of this paper, we introduce the notation

DN = diag(d1, . . . , dN ) = diag(d(N)
1 , . . . , d

(N)
N ).

For every unit vector e, we have

EXN [eNθ〈e,XNe〉] =

∏
i<j

TµNi,j
(2
√
Nθeiej)

[ N∏
i=1

TµNi,i
(
√
Nθe2

i )eNθdie
2
i

]

=

∏
i<j

exp
(
2Nθ2e2

i e
2
j

)[ N∏
i=1

exp
(
Nθ2e4

i +Nθdie
2
i

)]

= exp
(
Nθ2

)
exp(Nθ〈e,DNe〉).

(5.4.1)

Integrating over SN−1, we find

EXN [IN (XN , θ)] = eNθ
2
IN (DN , θ),

so Proposition 5.3.3 follows from Proposition 5.3.1.

The proof under the SSGC Hypothesis is more involved and will take up the remainder of this

section. We separate the upper and lower bounds as follows.

Lemma 5.4.1. Under the SSGC Hypothesis, for any θ > 0 and any N we have

EXN [I(β)
N (XN , θ)] 6 eN

θ2
β I

(β)
N (DN , θ).
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In particular, by Proposition 5.3.1, for any θ > 0 we have

lim sup
N→∞

1
N

logEXN [I(β)
N (XN , θ)] 6

θ2

β
+ J (β)(µD, θ, r(µD)).

Lemma 5.4.2. Under the SSGC Hypothesis, for any 0 6 θ < θ
(β)
c we have

lim inf
N→∞

1
N

logEXN [I(β)
N (XN , θ)] >

θ2

β
+ J (β)(µD, θ, r(µD)).

The proof of the lower bound will use the following two technical results.

Lemma 5.4.3. Under the SSGC Hypothesis, for every δ > 0 there exists ε(δ) > 0 such that, for

every N ∈ N, every i, j ∈ J1, NK, and every t ∈ R with |t| 6 ε(δ) if β = 1 (or every t ∈ C with

|t| 6 ε(δ) if β = 2),

TµNi,j
(t) > exp

(
(1− δ) |t|

2(1 + δij)
2β

)
.

Lemma 5.4.4. For any 0 6 θ < θc we have

lim
N→∞

1
N

log

Ee,β
[
1
‖e‖∞6N−

3
8
eNθ〈e,DNe〉

]
I

(β)
N (DN , θ)

 = 0. (5.4.2)

Proof of Lemma 5.4.1. This is the same as the proof under the Gaussian Hypothesis, except that

the second equality in (5.4.1) is replaced by an upper bound, due to the upper-bound assumption

(5.2.1) on Laplace transforms.

Proof of Lemma 5.4.2. Fix δ > 0, and let ε = ε(δ) be as in Lemma 5.4.3, proved below. Whenever

the unit vector e is such that ‖e‖∞ 6 N−3/8, we have

max
i,j

∣∣∣2√Nθeiej∣∣∣ 6 ε(δ), max
i

∣∣∣√Nθe2
i

∣∣∣ 6 ε(δ)
for N > N0(δ). (The proof below will work with any exponent strictly between −1/2 and −1/4;

but since the exponent does not appear in the final result, we have chosen −3/8 for definiteness.)
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Thus the lower bound on the Laplace transform of Lemma 5.4.3 gives us, for such vectors e,

EXN [eNθ〈e,XNe〉] =

∏
i<j

TµNi,j
(2
√
Nθeiej)

[ N∏
i=1

TµNi,i
(
√
Nθe2

i )eNθdie
2
i

]

>

∏
i<j

e(1−δ)2Nθ2e2i e
2
j

[ N∏
i=1

e(1−δ)Nθ2e4i+Nθdie
2
i

]

= e(1−δ)Nθ2
eNθ〈e,DNe〉.

Therefore

EXN [IN (XN , θ)] = Ee[EXN [eNθ〈e,XNe〉]] > Ee
[
1‖e‖∞6N−3/8EXN [IN (XN , θ)]

]
> e(1−δ)Nθ2

Ee
[
1
‖e‖∞6N−

3
8
eNθ〈e,DNe〉

]

= e(1−δ)Nθ2
Ee
[
1
‖e‖∞6N−

3
8
eNθ〈e,DNe〉

]
IN (DN , θ)

IN (DN , θ).

Thus Lemma 5.4.4, which is proved below, and Proposition 5.3.1 give us

lim inf
N→∞

1
N

logEXN [IN (XN , θ)] > (1− δ)θ2 + J(µD, θ, r(µD))

for every δ > 0.

Proof of Lemma 5.4.3. Let µ 6= δ0 be a centered measure on R, and write µ(f) for the integral of

a function f against µ. Whenever x ∈ R, we have ex > 1 + x+ x2

2 + x3

6 ; thus

Tµ(t) > 1 + t2µ(x2)
2 + t3µ(x3)

6 > 1 + t2µ(x2)
2 − |t|

3µ(|x|3)
6 .

Now it is standard that the bound Tµ(t) 6 exp( t
2µ(x2)

2 ) implies

µ(|x|3) 6 3(2µ(x2))3/2Γ(3/2) 6 8µ(x2)3/2.

217



Then the result follows from the limit

lim
t→0

1
|t|

 log
[
1 + t2µ(x2)

2 − 8|t|3µ(x2)3/2

6

]
(
t2µ(x2)

2

) − 1

 = −8
√
µ(x2)
3 .

The speed of convergence in this limit can only depend on µ through µ(x2); thus in the result we

may choose ε(δ) uniformly in the distributions µNi,j .

Proof of Lemma 5.4.4. This builds on the proof of Lemma 14 in [101]. Notice that the upper bound

in Equation (5.4.2) is for free; we only need to show the lower bound.

It is well known that

(e1, . . . , eN ) d=
(
g1
‖g‖2

, . . . ,
gN
‖g‖2

)

where g = (g1, . . . , gN ) is a standard Gaussian vector in RN . The idea is to work in this Gaussian

representation, relying on the fact that ‖g‖ will concentrate around
√
N .

Towards this end, we rewrite our desired inequality as

lim inf
N→∞

1
N

log
E
[
1 ‖g‖∞
‖g‖2

6N−3/8 exp
(
Nθ

∑N

i=1 dig
2
i∑N

i=1 g
2
i

)]
E
[
exp

(
Nθ

∑N

i=1 dig
2
i∑N

i=1 g
2
i

)] > 0.

Since standard Gaussian measure is isotropic, we may and will assume for the remainder of this

proof that the di’s are ordered as d1 > · · · > dN . Write v = vN for the unique solution in

(d1 − 1
2θ ,+∞) of the equation

1
2θ

1
N

N∑
i=1

1
v + 1

2θ − di
= 1.

(This exists and is unique because the left-hand side is a strictly decreasing positive function of

v ∈ (d1 − 1
2θ ,+∞), tending to infinity as v ↓ d1 − 1

2θ and tending to zero as v →∞.)

Let us pause to collect some facts about v. If we write

dmax = dmax (N0) = sup
N>N0

(
Nmax
i=1
|di|
)
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for N0 large enough, then we have [118, Fact 2.4(3)] that v 6 d1 6 dmax , and by definition

v > d1 − 1
2θ > −dmax − 1

2θ , so

|v| 6 dmax + 1
2θ . (5.4.3)

Furthermore, the proof of [101, Theorem 2] shows that, since θ < θc, there exists some small η > 0

such that

for all i, 1 + 2θv − 2θdi > η. (5.4.4)

By the proof of [101, Lemma 14] (for the first inequality) and Equation (5.4.3) (for the second), for

every 0 < κ < 1
2 and N large enough depending on κ, we have

1

E
[
exp

(
Nθ

∑N

i=1 dig
2
i∑N

i=1 g
2
i

)] > 1
2

N∏
i=1

[√
1 + 2θv − 2θdi

]
e−Nθv−N

1−κθ(|v|+dmax )

>
1
2

N∏
i=1

[√
1 + 2θv − 2θdi

]
e−Nθv−N

1−κθ(2dmax + 1
2θ ).

(5.4.5)

For 0 < κ < 1
2 , we introduce the event AN (κ) =

{∣∣∣‖g‖22N − 1
∣∣∣ 6 N−κ}. Now the same arguments

from [101, Lemma 14], along with Equation (5.4.3), give

E
[
1 ‖g‖∞
‖g‖2

6N−3/8 exp
(
Nθ

∑N
i=1 dig

2
i∑N

i=1 g
2
i

)]

> E
[
1AN (κ)1 ‖g‖∞

‖g‖2
6N−3/8 exp

(
Nθ

∑N
i=1 dig

2
i∑N

i=1 g
2
i

)]

> eNθv−N
1−κθ(dmax +|v|)E

[
1AN (κ)1 ‖g‖∞

‖g‖2
6N−3/8 exp

(
N∑
i=1

θ(di − v)g2
i

)]

> eNθv−N
1−κθ(2dmax + 1

2θ )
N∏
i=1

[ 1√
1 + 2θv − 2θdi

]
P vN

(
AN (κ), ‖g‖∞

‖g‖2
6 N−3/8

)
,

(5.4.6)

where P vN = P v,DN ,θN is the probability measure on RN defined by

P vN (dg1, . . . ,dgN ) = 1
√

2πN
N∏
i=1

[√
1 + 2θv − 2θdie−

1
2 (1+2θv−2θdi)g2

i dgi
]
.
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By Equations (5.4.5) and (5.4.6), we are done if we can show that

lim
N→∞

P vN

(
AN (κ), ‖g‖∞

‖g‖2
6 N−3/8

)
= 1.

The proof of [101, Lemma 14] shows that, for our choice of v and since we have chosen θ < θc,

we have

P vN (AN (κ)c) = o(1),

so it remains only to bound

P vN

(
AN (κ), ‖g‖∞

‖g‖2
> N−3/8

)
6

N∑
i=1

P vN

(
AN (κ), |gi|

2

‖g‖22
> N−3/4

)

6
N∑
i=1

P vN

(
|gi| >

√
(N −N1−κ)N−3/4

)

6
N∑
i=1

P vN

(
|gi| >

1
2N

1/8
)

for N large enough depending on κ. But now we observe that

g̃i =
√

1 + 2θv − 2θdigi

are i.i.d. standard normal variables under P vN , so that by Equation (5.4.4) we have

N∑
i=1

P vN

(
|gi| >

1
2N

1/8
)

=
N∑
i=1

P vN

(
|g̃i| >

1
2N

1/8√1 + 2θv − 2θdi
)

6 NP vN

(
|g̃i| >

√
η

2 N1/8
)
6 N exp

(
−η8N

1/4
)

which is o(1). This concludes the proof.
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5.5 Concentration and exponential tightness for tilted measures

5.5.1 Proof overview. The proof of Proposition 5.3.9 is broken into the following three lemmata.

We emphasize that Lemma 5.5.3 is perhaps the main technical difficulty of the present paper, and

could be useful by itself. As throughout the paper, proofs are only written for β = 1 and thus we

drop β from all notations.

Lemma 5.5.1. If Proposition 5.3.9 holds for θ = 0, then it holds for all θ > 0. (For the second

point, the same γ > 0 works for all θ > 0.)

Lemma 5.5.2. For any K > 2dmax ,

PN (λN (XN ) > K) 6 4 exp
(
N

(
5− K

8
√

2

))
,

PN (λ1(XN ) < −K) 6 4 exp
(
N

(
5− K

8
√

2

))
.

In particular, the first point of Proposition 5.3.9 is true for θ = 0.

Lemma 5.5.3. Under Assumption 2, the second point of Proposition 5.3.9 is true for θ = 0: There

exists γ > 0 such that, for any 0 < κ < γ,

lim
N→∞

1
N

logPN (d(µ̂XN , ρsc � µD) > N−κ) = −∞.

Note that this result is the only place in the paper where we use Assumption 2.

5.5.2 Proof of Lemma 5.5.1.

Fix θ > 0. Lemma 5.4.2 gives sharp lower bounds on

EXN [IN (XN , θ)]

for subcritical θ values, but here we need a much weaker lower bound for all positive θ values. To-
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wards this end, notice that whenever µ is a centered measure on R, Jensen’s gives us inft∈R Tµ(t) > 1.

Thus for every unit vector e we have

EXN [eNθ〈e,XNe〉] =

∏
i<j

TµNi,j
(2
√
Nθeiej)

[ N∏
i=1

TµNi,i
(
√
Nθe2

i )eNθdie
2
i

]

>
N∏
i=1

eNθdie
2
i > e−Nθdmax .

(5.5.1)

Now, whenever A = AN is a Borel subset of the space of N ×N real matrices, Equation (5.5.1)

and Cauchy-Schwarz give us, for N sufficiently large depending on θ,

PθN (A) = EXN [1XN∈AIN (XN , θ)]
EXN [IN (XN , θ)]

6 eNθdmax EXN ,e[1XN∈Ae
Nθ〈e,XNe〉]

6 eNθdmax
√
PN (A)EXN ,e[e2Nθ〈e,XNe〉] = eNθdmax

√
PN (A)EXN [IN (XN , 2θ)].

Thus for any sequence {AN} we have, from Lemma 5.4.1,

lim sup
N→∞

1
N

logPθN (AN ) 6 θdmax + 1
2 lim sup

N→∞

1
N

logPN (AN ) + (2θ)2 + J(µD, 2θ, r(µD))
2 .

This estimate gives us the following two points, from which we can verify the various claims of

Proposition 5.3.9 by taking various choices of {AN} and {AM,N}.

– If {AN} is such that limN→∞
1
N logPN (AN ) = −∞, then for all θ > 0 we have

lim sup
N→∞

1
N

logPθN (AN ) = −∞.

– If {AM,N} is such that limM→∞ lim supN→∞ 1
N logPN (AM,N ) = −∞, then for all θ > 0 we

have

lim
M→∞

lim sup
N→∞

1
N

logPθN (AM,N ) = −∞.

5.5.3 Proof of Lemma 5.5.2.
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For Lemma 5.5.2, notice that it suffices to bound PN (‖XN‖ > K). But

PN (‖XN‖ > K) 6 PN
(∥∥∥∥WN√

N

∥∥∥∥ > K

2

)
+ PN

(
‖DN‖ >

K

2

)

and the second term vanishes for K large enough, so we only need to control the first term. But

this was done in [99, Lemma 1.9]. The constants are slightly worse for the β = 2 estimate, and we

phrase Lemma 5.5.2 in terms of these worse constants.

5.5.4 Proof of Lemma 5.5.3.

Lemma 5.5.4. With C and ε0 as in Assumption 2, then for any η 6 1 we have

sup
E∈R

∣∣∣Gρsc�µ̂DN
(E + iη)−Gρsc�µD(E + iη)

∣∣∣ 6 8
√
CN−

ε0
2

η2 .

Proof. By recalling the definition of the Dudley distance and by calculating the L∞ norm and

Lipschitz constants of the function y 7→ 1
E+iη−y , we find that

∣∣∣Gρsc�µ̂DN
(E + iη)−Gρsc�µD(E + iη)

∣∣∣ 6 2
η2d(ρsc � µ̂DN , ρsc � µD),

uniformly in E ∈ R.

Now we control d(ρsc � µ̂DN , ρsc � µD) in terms of d(µ̂DN , µD). Write dL for the Lévy distance

between probability measures

dL(µ, ν) = inf{ε > 0 : µ(A) 6 ν(Aε) + ε for all Borel A}.

Then it is classical [71, Corollary 11.6.5, Theorem 11.3.3] that, whenever µ and ν are probability

measures on R,
1
2d(µ, ν) 6 dL(µ, ν) 6 2

√
d(µ, ν).
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On the other hand, [48, Proposition 4.13] says that

dL(ρsc � µ̂DN , ρsc � µD) 6 dL(ρsc, ρsc) + dL(µ̂DN , µD) = dL(µ̂DN , µD).

Putting these together, we obtain

d(ρsc � µD, ρsc � µ̂DN ) 6 2dL(ρsc � µD, ρsc � µ̂DN ) 6 2dL(µ̂DN , µD) 6 4
√
d(µ̂DN , µD).

This finishes the proof by Assumption 2.

Lemma 5.5.5. Fix some A > 0 independent of N . If δ > 0 is chosen sufficiently small, then

∫ A

−A

∣∣∣EXN [Gµ̂XN (E + iN−δ)]−Gρsc�µD(E + iN−δ)
∣∣∣ dE = O(N2δ−min(0.99, ε02 )).

We first give an informal overview of the proof. We will compare EXN [Gµ̂XN (·)] and Gρsc�µD(·)

via three intermediate comparisons. First, we will import a local law to show that with high

probability and for appropriate z values,

Gµ̂XN (z) ≈ − 1
N

trMMDE(z)

where the matrixMMDE(z) = MN,MDE(z) exactly solves a matrix equation called the Matrix Dyson

Equation (MDE). (The negatives appear since the convention in the local-law literature is to define

the Stieltjes transform of a measure as
∫ µ(dy)

z−y instead of our
∫ µ(dy)

y−z . We have preferred to stick to

that convention when working in that vein, so that the reader can more easily cross-reference.) Then

we will show that a matrix MWig(z) = MN,Wig(z) whose normalized trace is exactly −Gρsc�µ̂DN

approximately solves the MDE; standard arguments about the so-called stability of the MDE will

then show

− 1
N

trMMDE(z) ≈ − 1
N

trMWig(z) = Gρsc�µ̂DN
(z).
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Finally, we will use Lemma 5.5.4 to show

Gρsc�µ̂DN
(z) ≈ Gρsc�µD(z).

Notice that all quantities here, except for Gµ̂XN , are deterministic.

Proof of Lemma 5.5.5. Throughout, we write z = E + iη. Later, we will decide how to choose

η = η(N).

For a matrix M ∈ CN×N , we define its imaginary part as =(M) = 1
2i [M −M

∗]. Whenever

S : CN×N → CN×N is a linear operator preserving the set {M : =(M) > 0} that is self-adjoint

with respect to the inner product 〈R, T 〉 = tr(R∗T ), it is known [106] that the following constrained

equation admits a unique solution:

0 = Id +(z Id−DN +S[M(z)])M(z) subject to =(M(z)) = 1
2i [M(z)−M∗(z)] > 0. (5.5.2)

Furthermore,M(z) is a holomorphic matrix-valued function of z. In particular, we will be interested

in the unique solutions to this equation corresponding to two operators S:

SMDE[M ] = 1
N

tr(M) Id + 1
N
MT induces the solution MMDE(z),

SWig[M ] = 1
N

tr(M) Id induces the solution MWig(z).

By rearranging (5.5.2) and taking the normalized trace, one sees that s(z) = − 1
N trMWig(z) satisfies

the Pastur equation

s(z) = Gµ̂DN (z − s(z))

which characterizes the Stieltjes transform of ρsc � µ̂DN ([131], see also [130, Section 2.2]). Hence

− 1
N

trMWig(z) = Gρsc�µ̂DN
(z).
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– For any δ > 0, write H = {z = E + iη ∈ C : η > 0} and define the complex domain

Dδfar = {z ∈ H : |z| 6 N100, η > N−δ}.

(The notation reminds us that points in this domain are relatively far from the real line;

typically in local laws the optimal scale is η � 1
N .) Then [75, Theorem 2.1] tells us that there

is a universal constant c > 0 such that, for any sufficiently small ε > 0, there exists C = C(ε)

such that

P
(∣∣∣∣Gµ̂XN (z) + 1

N
tr(MMDE(z))

∣∣∣∣ 6 N ε

N
in Dcεfar

)
> 1− CN−100.

Since 1
N tr(MMDE(z)) is known by [5, Proposition 2.1] to be the Stieltjes transform of some

measure, we also have the trivial bounds

∣∣∣Gµ̂XN (E + iη)
∣∣∣ 6 1

η
and

∣∣∣∣ 1
N

tr(MMDE(E + iη))
∣∣∣∣ 6 1

η
.

If η = Na for some −cε < a < 0, then for N sufficiently large we have {E + iη : |E| 6 A} ⊂

Dcεfar; thus whenever |E| 6 A and η is as above we have

EXN
∣∣∣∣Gµ̂XN (E + iη) + 1

N
trMMDE(E + iη)

∣∣∣∣ 6 N ε

N
+ 2C

η
N−100,

so that

∫ A

−A

∣∣∣∣EXN [Gµ̂XN (E + iη)] + 1
N

trMMDE(E + iη)
∣∣∣∣ dE 6 2A

(
N ε

N
+ 2C

η
N−100

)
.

– The following type of stability analysis is standard in the MDE literature; our exact line of

argument follows most closely that of [6]. By the definition of MWig and since SMDE[M ] =
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SWig[M ] + 1
NM

T , we have

M−1
Wig(z) = z Id−DN + SMDE[MWig(z)]−

MT
Wig(z)
N︸ ︷︷ ︸

=:E(z)

.

As the notation suggests, we will consider E(z) as an error term, so that MWig(z) approxi-

mately solves Equation (5.5.2) with S = SMDE. Indeed, from (4.1) in [5] we have, for every

z ∈ H,

max{‖MMDE(z)‖, ‖MWig(z)‖} 6 1
η
. (5.5.3)

(Recall ‖ · ‖ is the operator norm induced by the standard Euclidean norm.) In particular,

we have

‖E(z)‖ 6 1
Nη

. (5.5.4)

Now manipulations of the MDE like those leading up to [6, (4.25)] yield the quadratic in-

equality

‖MWig(z)−MMDE(z)‖

6 ‖L −1(z)‖‖MMDE(z)‖(‖E(z)‖‖MWig(z)‖+ ‖SMDE‖‖MWig(z)−MMDE(z)‖2),

where L (z) : CN×N → CN×N is the invertible operator

L (z)[T ] = T −MMDE(z)SMDE[T ]MMDE(z)

and norms on operators from CN×N to itself are operator norms with respect to ‖ · ‖. Using

(5.5.3), (5.5.4), and the estimate ‖SMDE‖ 6 2, this simplifies to

‖MWig(z)−MMDE(z)‖ 6 ‖L
−1(z)‖
η

( 1
Nη2 + 2‖MWig(z)−MMDE(z)‖2

)
. (5.5.5)

From [6, (3.23), (3.22), Convention 3.5] combined with (5.5.3), there exists a constant C such
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that, for all z,

‖L −1(z)‖ 6 C
(

1 + 1
η2 + ‖M

−1
MDE(z)‖9

η13

)
. (5.5.6)

We will use this in two regimes, depending on whether η > 1 or η 6 1.

– Step 1 (η > 1): Taking norms on both sides of (5.5.2) and using (5.5.3), we obtain

‖M−1
MDE(z)‖ 6 |z|+ dmax + 2.

Recall we are integrating over E in some [−A,A]; for such E, we have |z| 6 η
√

1 +A2,

so (using (5.5.6)) there exist constants C ′, C ′′ such that

sup
|E|6A,η>1

‖M−1
MDE(z)‖
η

6 C ′, sup
|E|6A,η>1

‖L −1(z)‖ 6 C ′′. (5.5.7)

Now fix E ∈ [−A,A] and consider the functions fN : (0,∞) → R and g±N : [1,∞) → R

given by

fN (η) = ‖MWig(E + iη)−MMDE(E + iη)‖,

g±N (η) = η

4C ′′

1±
√

1− 8(C ′′)2

Nη4

.
For η >

√
8C ′′, the bound (5.5.3) gives us

fN (η) 6 2
η
6

η

4C ′′ < g+
N (η).

But the quadratic inequality (5.5.5) with the estimate (5.5.7) inserted tells us that

fN (η) ∈ [0, g−N (η)] ∪ [g+
N (η),∞).

Furthermore, since MMDE(z) and MWig(z) are holomorphic functions of z, we have that
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fN (·) is continuous; and since g−N (η) < g+
N (η) for all η > 1, we conclude fN (η) 6 g−N (η)

for all η > 1.

– Step 2 (η 6 1): Taking norms on both sides of (5.5.2) and using (5.5.3), we obtain

‖M−1
MDE(z)‖ 6 |z|+ dmax + 2

η
.

Arguments like those above then give

sup
|E|6A,η61

‖L −1(z)‖
η−22 6 C ′′′

for some new constant C ′′′, which we again insert back in the quadratic inequality (5.5.5).

This lets us bound fN (η) with respect to the new functions h±N (η) : [N−1/50, 1] → R

given by

h±N (η) = η23

4C ′′′

1±
√

1− 8(C ′′′)2

Nη48

,
but at η = 1 and for N large enough we have (using 1−

√
1− x 6 x)

fN (1) 6 g−N (1) 6 2C ′′

N
<

1
4C ′′′ = h+

N (1).

Thus

fN (η) 6 h−N (η) 6 2C ′′′

Nη25 ,

uniformly over E ∈ [−A,A]; hence

∫ A

−A

∣∣∣∣ 1
N

tr(MMDE(E + iN−δ)−MWig(E + iN−δ))
∣∣∣∣ dE 6 4AC ′′′

N1−25δ

for sufficiently small δ > 0.
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– If η 6 1 then Lemma 5.5.4 gives us

∫ A

−A

∣∣∣∣− 1
N

trMWig(E + iη)−Gρsc�µD(E + iη)
∣∣∣∣ dE

=
∫ A

−A

∣∣∣Gρsc�µ̂DN
(E + iη)−Gρsc�µD(E + iη)

∣∣∣ dE 6 16A
√
C
N−

ε0
2

η2 .

Combining these estimates, we have the following result: If η = N−δ and δ is sufficiently small,

then every assumption we made on η in the above bounds is satisfied and, for all sufficiently small

ε > 0,

∫ A

−A

∣∣∣EXN [Gµ̂XN (E + iη)]−Gρsc�µD(E + iη)
∣∣∣ dE = O

(
N ε

N
+ 1
ηN100 + 1

Nη25 + 1
N

ε0
2 η2

)

= O
(
N2δ−min(0.99, ε02 )

)
.

This concludes the proof.

Lemma 5.5.6. Write

FXN (x) = µ̂XN ((−∞, x]),

Fρsc�µD(x) = (ρsc � µD)((−∞, x]).

Then there exists some γ > 0 such that

sup
x
|EXN [FXN (x)]− Fρsc�µD(x)| = O(N−γ).

Proof. To apply a standard method for bounding Kolmogorov-Smirnov distances, we must first

show ∫ ∞
−∞
|EXN [FXN (x)]− Fρsc�µD(x)| dx <∞. (5.5.8)
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Since EXN [FXN ] and Fρsc�µD both take values in [0, 1], it suffices to find M > 0 such that

∫
|x|>M

|EXN [FXN (x)]− Fρsc�µD(x)|dx <∞.

Furthermore, since ρsc � µD is compactly supported, we may take M so large that Fρsc�µD(x)

vanishes for x < −M and is identically one for x > M . Now,

EXN [FXN (x)] = 1
N

EXN

 N∑
j=1

1λj(XN )<x

 = 1
N

N∑
j=1

PN (λj(XN ) < x) 6 PN (λ1(XN ) < x) (5.5.9)

so that, by Lemma 5.5.2,

∫ −M
−∞

EXN [FXN (x)] dx 6
∫ −M
−∞

4eN(5+ x

8
√

2
) dx = 32

√
2

N
exp

[
N

(
5− M

8
√

2

)]
<∞.

Similarly, ∫ ∞
M

(1− EXN [FXN (x)]) dx <∞

which finishes the proof of (5.5.8).

Thus we may import [19, Theorem 2.2], which says that, for any choice of η > 0 and B > 0, we

have

sup
x
|EXN [FXN (x)]− Fρsc�µD(x)| 6

[
1
η

sup
x

∫
|y|65η

|Fρsc�µD(x+ y)− Fρsc�µD(x)|dy

+ 2π
η

∫
|x|>B

|EXN [FXN (x)]− Fρsc�µD(x)| dx

+
∫ 10B

−10B

∣∣∣EXN [Gµ̂XN (E + iη)]−Gρsc�µD(E + iη)
∣∣∣ dE].

We will control the three terms on the right-hand side in order. In the course these estimates we

shall choose the parameters B and η = η(N).

– Since the compactly supported measure ρsc � µD has L∞ density [49, Corollary 5], Fρsc�µD
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is Lipschitz, so we can control the first term by

1
η

sup
x

∫
|y|65η

|Fρsc�µD(x+ y)− Fρsc�µD(x)|dy 6 25η‖Fρsc�µD(x)‖Lip.

– Choose some B > max(|r(ρsc � µD)|, |l(ρsc � µD)|); then arguments as above show that

2π
η

∫
|x|>B

|EXN [FXN (x)]− Fρsc�µD(x)|dx 6 2π
η
· 64
√

2
N

exp
[
N

(
5− B

8
√

2

)]
.

Since we will ultimately choose η = N−δ for some small δ > 0, we can choose B so large that

this decays exponentially fast.

– If we choose η = N−δ for δ > 0 sufficiently small, then Lemma 5.5.5 tells us that

∫ 10B

−10B

∣∣∣EXN [Gµ̂XN (E + iN−δ)]−Gρsc�µD(E + iN−δ)
∣∣∣ dE = O(N2δ− ε02 ).

We combine these to obtain

sup
x
|EXN [FXN (x)]− Fρsc�µD(x)| = O(Nmax(−δ,2δ− ε02 )).

Lemma 5.5.7. Under either the Gaussian Hypothesis or the SSGC Hypothesis, there exist positive

constants C1 and C2 (depending on the constants in those hypotheses) such that

PN
[
d(µ̂XN ,EXN [µ̂XN ]) > N−1/6

]
6 C1N

1/4 exp
(
−C2N

7/6
)
.

Concentration results of this type are quite classical, using either the Herbst argument under the

log-Sobolev assumption, or results of Talagrand under the compact-support assumption. Indeed,

results of the former type are available “out of the box”; results of the latter type are available “off

the shelf” when DN vanishes. But when DN 6= 0, the barrier to using existing results is that, even
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if the entries of WN are uniformly compactly supported, the diagonal entries of

√
NXN = WN +

√
NDN

are supported in boxes that, while of fixed size, may have centers tending to infinity. So we modify

the existing proofs for this situation.

Proof of Lemma 5.5.7. Suppose first that we satisfy the log-Sobolev option of the SSGC Hypoth-

esis, that is, that the laws of the entries of WN satisfy a log-Sobolev inequality with a uniform

constant. Since Gaussian measure satisfies the log-Sobolev inequality, the same statement is true

under the Gaussian Hypothesis. Furthermore, one can see directly from the definition of the in-

equality that, if the law of the real random variable X satisfies the logarithmic Sobolev inequality

with constant c, then for any deterministic α ∈ R the law of X + α also satisfies the logarithmic

Sobolev inequality with constant c. Thus the laws of the entries of
√
NXN satisfy a log-Sobolev

inequality with uniform constant. This uniformity allows us to import the result [103, Corollary

1.4b], which tells us that there exist positive constants C1 and C2 such that, for any δ > 0,

PN [d(µ̂XN ,EXN [µ̂XN ]) > δ] 6 C1
δ3/2 exp

(
−C2N

2δ5
)
.

By choosing δ = N−1/6, this completes the proof under the Gaussian Hypothesis or under the

log-Sobolev option of the SSGC Hypothesis.

Next, we turn to the compact-support option of the SSGC Hypothesis, and start by importing

the following result.

Lemma 5.5.8. [103, Theorem 1.3a] Fix some (ai,j)i,j6N ⊂ RN , and suppose that there exists a

compact set K ⊂ R such that the i, jth entry of
√
NXN is supported on the compact set ai,j +K =

{ai,j + k : k ∈ K}. Write δ1(N) = 8|K|
√
π/N . Let K ⊂ R be compact, and define the class of test

functions

Flip,K = {f : supp(f) ⊂ K, ‖f‖∞ + ‖f‖Lip 6 1}.
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Then, for any δ > 4
√
|K|δ1(N), we have

P
(

sup
f∈Flip,K

|trN (f(XN ))− E[trN (f(XN ))]| > δ
)

6
32|K|
δ

exp

− N2

16|K|2

[
δ2

16|K| − δ1(N)
]2
.

(This result was initially stated for centered entries, but by shifting the test function they use

to apply [143, Theorem 6.6] the proof goes through.) The authors of [103] then extend this result

to a supremum over all bounded Lipschitz functions, not just those that are compactly supported,

but in the case that E[XN ] = 0. Their arguments require a bound on 1
N tr(X2

N ), which we replace

for our model with
1
N

tr(X2
N ) 6 sup{|x|2 : x ∈ K}+ d2

max + 1,

which is true for N sufficiently large. Following their proofs but substituting this estimate, we

obtain the following result, which is analogous to [103, Corollary 1.4a]:

Lemma 5.5.9. Under the assumptions and notation of Lemma 5.5.8, write S = sup{|x|2 : x ∈ K}

and M =
√

8(S + d2
max + 1). Then for any N sufficiently large and for any δ > 0 satisfying the

implicit equation δ > (128(M +
√
δ)δ1(N))2/5, we have

PXN (d(µ̂XN ,EXN (µ̂XN )) > δ)

6
128(M +

√
δ)

δ3/2 exp

− N2

16|K|2

[
δ5/2

128(M +
√
δ)
− δ1(N)

]2
.

For N sufficiently large, δ = N−1/6 satisfies the implicit equation given in the lemma, and it is

easy to show that [
δ5/2

128(M +
√
δ)
− δ1(N)

]2

>
N7/6

N2(512M)2

for N large enough, which gives the desired result in this case.
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Proof of Lemma 5.5.3. By Lemma 5.5.7, if κ < 1
6 we have

PN (d(µ̂XN , ρsc � µD) > N−κ)

6 1
d(EXN [µ̂XN ],ρsc�µD)>N−κ

2
+ PN

(
d(µ̂XN ,EXN [µ̂XN ]) > N−κ

2

)

6 1
d(EXN [µ̂XN ],ρsc�µD)>N−κ

2
+ C1N

1/4 exp
(
−C2

2 N7/6
)
.

Now we wish to estimate d(EXN [µ̂XN ], ρsc�µD), in order to show that the above indicator vanishes.

Towards this end, choose an arbitrary test function f with ‖f‖L∞ + ‖f‖Lip 6 1.

First we estimate the tails. For M large enough, Equation (5.5.9) gives us

∣∣∣∣∣
∫ −M
−∞

f(x)(EXN [µ̂XN ]− (ρsc � µD))(dx)
∣∣∣∣∣

=
∣∣∣∣∣
∫ −M
−∞

f(x)EXN [µ̂XN ](dx)
∣∣∣∣∣ 6 ‖f‖L∞EXN [FXN (−M)]

6 EXN [FXN (−M)] 6 PN (λ1(XN ) < −M) 6 e−N

where the last inequality follows from Lemma 5.5.2. Similarly,

∣∣∣∣∫ ∞
M

f(x)(EXN [µ̂XN ]− (ρsc � µD))(dx)
∣∣∣∣ 6 1− EXN [FXN (M)] 6 e−N .

Thus it remains to estimate
∣∣∣∫M−M f(x)(EXN [µ̂XN ]− (ρsc � µD))(dx)

∣∣∣. We will do this by ap-

proximating f by a test function smooth enough to integrate by parts.
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More precisely, suppose first that f is C1 and that ‖f ′‖L∞ 6 1. Then

∣∣∣∣∣
∫ M

−M
f(x)(EXN [µ̂XN ]− (ρsc � µD))(dx)

∣∣∣∣∣
=
∣∣∣∣∣
∫ M

−M
f(x) d(EXN [FXN (x)]− Fρsc�µD(x))

∣∣∣∣∣
6 (2M‖f ′‖L∞ + ‖f‖L∞ + ‖f‖L∞)‖EXN [FXN ]− Fρsc�µD‖L∞

6 (2M + 2)‖EXN [FXN ]− Fρsc�µD‖L∞ .

Now suppose that f only satisfies ‖f‖L∞+‖f‖Lip 6 1. Since [−M,M ] is a compact set independent

of N , we may choose g ∈ C1 with ‖g′‖L∞([−M,M ]) 6 1 and

‖f − g‖L∞([−M,M ]) 6 (M + 1)‖EXN [FXN ]− Fρsc�µD‖L∞ .

Thus

∣∣∣∣∣
∫ M

−M
(f(x)− g(x))(EXN [µ̂XN ]− (ρsc � µD))(dx)

∣∣∣∣∣ 6 2‖f − g‖L∞([−M,M ])

6 (2M + 2)‖EXN [FXN ]− Fρsc�µD‖L∞ .

Combining these and and optimizing over f , we have

d(EXN [µ̂XN ], ρsc � µD) 6 2e−N + 4(M + 1)‖EXN [FXN ]− Fρsc�µD‖L∞ = O(N−γ),

where the last equality follows from Lemma 5.5.6. Thus if we choose 0 < κ < γ, we have

1
d(EXN [µ̂XN ],ρsc�µD)>N−κ

2
= 0
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for sufficiently large N ; in particular this shows us that

PN (d(µ̂XN , ρsc � µD) > N−κ) 6 C1N
1/4 exp

(
−C2

2 N7/6
)

from which point it is easy to conclude the proof.

5.6 Properties of the rate function

The purpose of this section is to show that the supremum in the definition of

I(β)(x) = sup
θ>0

I(β)(x, θ)

is achieved at a value θ(β)
x , which is unique (except for x = r(ρsc � µD), where it is chosen by

convention) and which depends injectively on x. This implies that, in the large-deviation upper

bound established for tilted measures in Theorem 5.3.4, the rate function has a unique zero; this

property was crucial in the proof of Lemma 5.3.11 above. At the end of this section, we establish

goodness of I(β)(·).

Proposition 5.6.1. For every x > r(ρsc � µD) and for each β = 1, 2, there exists a unique θ > 0,

which we will write θ(β)
x , such that

I(β)(x) = sup
θ>0

I(β)(x, θ) = I(β)(x, θ(β)
x ).

Furthermore, I(β)(x) vanishes uniquely at x = r(ρsc � µD); and if we define by convention

θ
(β)
r(ρsc�µD) = β

2Gρsc�µD(r(ρsc � µD))

then the map x 7→ θ
(β)
x on the domain {x > r(ρsc�µD)} is injective. In particular, whenever x 6= y
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are at least r(ρsc � µD), we have

I(β)(y) > I(β)(y, θ(β)
x ).

We also have

xc > r(ρsc � µD)

with equality if and only if GµD(r(µD)) = Gρsc�µD(r(ρsc � µD)). In addition, the optimizer for xc

is in fact θ(β)
c as defined in (5.3.1):

θ(β)
xc = θ(β)

c =


β
2GµD(r(µD)) if GµD(r(µD)) < +∞,

+∞ otherwise, by convention,

and if x < xc then θ(β)
x < θ

(β)
xc . Finally,

I(2) = 2I(1).

Proof. For the duration of this proof, we introduce the notation

µsc
D := ρsc � µD.

We now restrict ourselves to β = 1, dropping β from all notations, until the last section of the

proof when we show I(2) = 2I(1). It can be checked directly from the definition that that, for any

compactly supported measure ν and any M > r(ν),

∂

∂θ
J(ν, θ,M ) =


Rν(2θ) if 0 6 2θ 6 Gν(M ),

M − 1
2θ if 2θ > Gν(M ).

Notice that this is a continuous function of θ. Furthermore, it is known [102, Lemma 6.1] that

Gµsc
D

(r(µsc
D)) 6 min(GµD(r(µD)), Gρsc(r(ρsc))) = min(GµD(r(µD)), 1).
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Since Gν is decreasing on (r(ν),+∞), there are three (or two) phases of θ values:

∂

∂θ
I(x, θ) =



0 if 0 6 2θ 6 Gµsc
D

(x),

x− 2θ −KµD(2θ) if Gµsc
D

(x) 6 2θ 6 GµD(r(µD)),

x− 2θ − r(µD) if 2θ > GµD(r(µD)),

where the third case disappears if GµD(r(µD)) = +∞ and the second case disappears if x = r(µsc
D)

and Gµsc
D

(r(µsc
D)) = GµD(r(µD)). Notice that this is a continuous function of θ > 0, and that, if

Gµsc
D

(x) 6 2θ 6 Gµsc
D

(r(µsc
D)), we can in fact write

∂

∂θ
I(x, θ) = x−Kµsc

D
(2θ).

In general we have

GµD(r(µD)) ∈ [Gµsc
D

(r(µsc
D)),+∞].

For the purposes of our analysis, the endpoints of this interval are degenerate cases, and will be

handled separately at the end. For now, assume that

GµD(r(µD)) ∈ (Gµsc
D

(r(µsc
D)),+∞).

Then ∂θI(x, θ) has three non-degenerate piecewise sections, and xc < ∞, where we recall the

threshold

xc =


GµD(r(µD)) + r(µD) if GµD(r(µD)) <∞,

+∞ otherwise.

In the course of the casework, we will show that xc > r(µsc
D) in this nondegenerate regime.

– Case 1 (x < xc): First we study θ in (1
2Gµsc

D
(x), 1

2GµD(r(µD))) and write the function

∂θI(x, θ) as

θ 7→ fx(θ) = x− 2θ −KµD(2θ)
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defined on this interval. We have

f ′′x (θ) =
4G′′µD(KµD(2θ))(
G′µD(KµD(2θ))

)3

= −8
(∫

µD(dt)
(KµD(2θ)− t)2

)−3(∫
µD(dt)

(KµD(2θ)− t)3

)
< 0

since 2θ < GµD(r(µD)), so that KµD(2θ) > r(µD) and
∫ µD(dt)

(KµD (2θ)−t)i > 0 for i = 2, 3. Thus

fx is strictly concave.

Let us find out where it is maximized. Since

f ′x(θ) = 2

 1∫ µD(dt)
(KµD (2θ)−t)2

− 1

,
we can rearrange

r(µsc
D) = Kµsc

D
(Gµsc

D
(r(µsc

D)))

= Rρsc(Gµsc
D

(r(µsc
D))) +KµD(Gµsc

D
(r(µsc

D)))

= Gµsc
D

(r(µsc
D)) +KµD(Gµsc

D
(r(µsc

D)))

to obtain

f ′x

(1
2Gµ

sc
D

(r(µsc
D))

)
= 2

 1∫ µD(dt)
(r(µsc

D)−Gµsc
D

(r(µsc
D))−t)2

− 1

.
But it is known that ∫

µD(dt)
(r(µsc

D)−Gµsc
D

(r(µsc
D))− t)2 = 1.

Indeed, using the notation and results of [64, Proposition 2.1] (although the ideas date back

to [49]), the above statement is equivalent to the statement v1,µD(F1,µD(r(µsc
D))) = 0. But
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F1,µD maps into {u+ iv ∈ C+ : v > v1,µD(u)}, and here

F1,µD(r(µsc
D)) = r(µsc

D)−Gµsc
D

(r(µsc
D))

is real; furthermore v1,µD(u) is a continuous function [49] of the real parameter u. These

conditions force v1,µD(F1,µD(r(µsc
D))) = 0. But this means that

f ′x

(1
2Gµ

sc
D

(r(µsc
D))

)
= 0.

Thus we have shown that fx(θ) = ∂θI(x, θ) is a strictly concave function on the open interval

(1
2Gµsc

D
(x), 1

2GµD(r(µD)), taking a unique maximum value (which can be computed to be

x − r(µsc
D)) at the point θ = 1

2Gµsc
D

(r(µsc
D)). Its value at the left endpoint of the interval is

0, and its value at the right endpoint of the interval is x − xc < 0. In particular, since fx is

decreasing on (1
2Gµsc

D
(r(µsc

D)), 1
2GµD(r(µD))), taking the value x− r(µsc

D) on the left endpoint

and value x− xc on the right endpoint, we have xc > r(µsc
D) as claimed.

Now if θ > 1
2GµD(r(µD)), then

∂θI(x, θ) = x− 2θ − r(µD) < xc −GµD(r(µD))− r(µD) = 0.

There are two subcases here:

– Subcase a (x = r(µsc
D )): Here, fx(θ) = ∂θI(x, θ) takes maximum value x− r(µsc

D) = 0

on the interval (1
2Gµ

sc
D

(r(µsc
D)), 1

2GµD(r(µD))
)
,

and is negative on the interval [1
2GµD(r(µD)),+∞). Thus I vanishes at r(µsc

D).

– Subcase b (x > r(µsc
D )): Here, the value of the function fx at θ = 1

2Gµsc
D

(r(µsc
D)) is
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x− r(µsc
D) > 0. Thus it vanishes at a unique point θx in the interval

(1
2Gµ

sc
D

(r(µsc
D)), 1

2GµD(r(µD))).

For such values of x, then, I(x, θ) vanishes for θ ∈ [0, 1
2Gµsc

D
(x)]; strictly increases for

θ ∈ (1
2Gµsc

D
, θx); and strictly decreases for θ ∈ (θx,+∞). In particular I(x) > 0 for such

x values.

– Case 2 (x > xc): Here we can explicitly write

θx = 1
2(x− r(µD)). (5.6.1)

The function fx defined above is still strictly concave on its domain and still vanishes at the

left endpoint of this domain, but now its value at the right endpoint is nonnegative; thus

I(x, θ) is strictly increasing for θ ∈ (1
2Gµsc

D
(x), 1

2GµD(r(µD))). A simple analysis of ∂θI(x, θ)

for θ > 1
2GµD(r(µD)) shows that θx as defined above is, as claimed, the unique θ value that

maximizes I(x, θ), and I(x) > 0.

In particular notice that

θxc = 1
2(xc − r(µD)) = 1

2GµD(r(µD)).

It remains only to show that x1 6= x2 =⇒ θx1 6= θx2 . If x1 < xc 6 x2, then θx1 and θx2 as

constructed above lie in disjoint intervals, so cannot be equal; and if xc 6 x1, x2 then we can see

θx1 6= θx2 from our explicit formula (5.6.1). Thus we only need consider x1 < x2 < xc. If x1 =

r(µsc
D), then θx1 = 1

2Gµsc
D

(r(µsc
D)) < θx2 by construction; thus we can assume r(µsc

D) < x1 < x2 < xc.

But then θx1 and θx2 are defined on the common interval (1
2Gµsc

D
(r(µsc

D)), 1
2GµD(r(µD))) as the

unique points satisfying

2θx1 +KµD(2θx1) = x1 6= x2 = 2θx2 +KµD(2θx2).
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Thus we must have θx1 6= θx2 .

Now we explain the necessary adjustments in the degenerate cases.

– Degenerate Case 1 (GµD(r(µD)) = Gµsc
D

(r(µsc
D ))):

The proof of [102, Lemma 6.1] shows that ω(r(µsc
D)) > r(µD), where ω is defined (see [64,

Proposition 2.1]) as ω(z) = z −Gµsc
D

(z); hence

xc = r(µD) +GµD(r(µD)) = r(µD) +Gµsc
D

(r(µsc
D))

= r(µD) + r(µsc
D)− ω(r(µsc

D)) 6 r(µsc
D)

and all x are “at least critical.”

– Degenerate Subcase a (x = r(µsc
D )): Then we only have

∂θI(r(µsc
D), θ)

=


0 if 0 6 2θ 6 GµD(r(µD))

r(µsc
D)− 2θ − r(µD) if 2θ > GµD(r(µD)).

From the first line of this display and from the equality

GµD(r(µD)) = Gµsc
D

(r(µsc
D))

we have

0 = Rµsc
D

(Gµsc
D

(r(µsc
D)))−GµD(r(µD))−RµD(GµD(r(µD)))

= r(µsc
D)−GµD(r(µD))− r(µD).

(5.6.2)

On the one hand, (5.6.2) tells us that

xc = r(µsc
D)
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so that by convention

θxc = 1
2Gµ

sc
D

(r(µsc
D)) = 1

2GµD(r(µD))

as claimed. On the other hand, if 2θ > GµD(r(µD)) then (5.6.2) tells us that

∂θI(r(µsc
D, θ)) = r(µsc

D)− 2θ − r(µD) 6 r(µsc
D)−GµD(r(µD))− r(µD) = 0.

So ∂θI(r(µsc
D)) 6 0 for all θ and I(r(µsc

D)) = 0 as claimed.

– Degenerate Subcase b (x > r(µsc
D )): Then fx as above is defined and strictly concave

on a nondegenerate interval; it vanishes at the left endpoint of this interval; it takes a

positive maximum (namely x − r(µsc
D)) at the right endpoint of this interval. Thus the

analysis of Case 2 above holds to show that θx is given by Equation (5.6.1).

The argument above for injectivity goes through, since Equation (5.6.1) works for all x values.

– Degenerate Case 2 (GµD(r(µD)) = +∞): Here xc = +∞, and all x values are sub-

critical. The function fx from Case 1 is then defined and strictly concave on the interval

(1
2Gµsc

D
(x),+∞). It has a unique maximum at 1

2Gµsc
D

(r(µsc
D)), where its value is positive; and

strict concavity tells us limθ→+∞ fx(θ) = −∞; thus fx still has a unique zero on its domain,

which we still call θx. The argument above for injectivity goes through.

Now we reintroduce β to all notations and show I(2) = 2I(1). If x < xc, then θ
(β)
x is defined

implicitly by

2
β
θ(β)
x +KµD

( 2
β
θ(β)
x

)
= x subject to 2

β
θ(β)
x ∈

(
Gµsc

D
(r(µsc

D)), GµD(r(µD))
)
.

(We showed this for β = 1, and the extension to β = 2 is similar.) If x > xc, then we have

2
β
θ(β)
x = x− r(µD).
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Notice that 2
β θ

(β)
x is independent of β. But then the definition (5.2.2) gives us

J (2)(ν, θx,M ) = 2J (1)(ν, θx,M )

from which the claim follows.

Proposition 5.6.2. The function I(β)(·) is a good rate function.

Proof. First, for any compactly-supported measure µ and any λ > r(µ), we have J (β)(µ, 0, λ) = 0;

hence I(β)(x) is nonnegative.

For every fixed θ, dominated convergence tells us that J (β)(ρsc � µD, θ, x) is a continuous

function of x > r(ρsc); hence I(β)(·) is lower semi-continuous at such x values. It is also lower

semi-continuous for x < r(ρsc�µD), where its value is infinite. Finally, since I(β)(·) is nonnegative

and vanishes at r(ρsc � µD), it is also lower semi-continuous there.

Hence I(β)(·) is a rate function. But since I(β)(·) is the rate function for a weak LDP of an

exponentially tight family, it is classical (see, e.g., [69, Lemma 1.2.18]) that I(β) is in fact good.

245



Appendices

Appendix A: Extensions to products of determinants

In this section, we are interested in expectations of products of determinants like

E
[∏̀
i=1
| det(H(i)

N )|
]
,

where ` is independent of N . In the landscape complexity program, these asymptotics help under-

stand the `th moment of the number of critical points of some high-dimensional random function.

Everything essentially is the same as in the case ` = 1, and we obtain leading-order determinant

asymptotics consistent with

E
[∏̀
i=1
|det(H(i)

N )|
]
≈
∏̀
i=1

E[|det(H(i)
N )|], (A.1)

on exponential scale in N . This is true no matter the correlation structure between the H(i)
N ’s, which

is perhaps surprising at first glance. However, note that (A.1) should hold at “both ends of the

correlation spectrum,” so to speak: On the one hand, it holds with exact equality if the H(i)
N ’s are

independent; on the other hand, if we believe in concentration then (A.1) is very plausible when

the H(i)
N ’s are the same as each other.

However, (A.1) does require higher moment assumptions: for example, it holds when the H(i)
N

are Wigner matrices with 2`+ ε moments, which is consistent with the case ` = 1. This is almost
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optimal, because if all the H(i)
N ’s are the same Wigner matrix, then the left-hand side of (A.1) is

infinite unless the entries have at least 2` moments; see the remark just before Corollary 2.1.3 and

the proof thereof in Section 2.3.3, which generalize to ` > 1.

These new moment assumptions are encapsulated in the following generalization of Assumption

(C) (notice that (C`) with ` = 1 is the same as (C)).

(C`) In addition to the Wegner assumption (2.1.5), we require

lim
N→∞

1
N

logE
[
N∏
i=1

(1 + |λi|1|λi|>eNε )
`

]
= 0 (A.2)

for every ε > 0 and

lim sup
N→∞

1
N logN logE[|det(HN )|`(1+δ)] <∞ for each i, (A.3)

for all sufficiently small δ > 0.

Here is the analogue of Theorem 2.1.1.

Theorem A.1. (Convexity-preserving functionals) Fix ` ∈ N, and consider ` collections

(X(i))`i=1 each consisting of M arbitrary independent entries. The collections can have any corre-

lation structure with respect to each other. Consider matrices H(i)
N = Φ(i)(X(i)) that each satisfy

Assumptions (I), (M), (E), (C`), and (S) with reference measures µ(i)
N . Then

lim
N→∞

(
1
N

logE
[∏̀
i=1
|det(H(i)

N )|
]
−
∑̀
i=1

∫
R

log|λ|µ(i)
N (dλ)

)
= 0. (A.4)

Proof. We refer freely to objects from the proof of Theorem 2.1.1, adding a parenthetical index (i)

to indicate their corresponding matrix. For example,

E(i)
ss = {dKS(µ̂Φ(i)(X(i)), µ̂Φ(i)(X(i)

cut)) 6 N
−κ}

247



and so on. The main estimate in the upper bound is

1
N

logE
[∏̀
i=1
| det(H(i)

N )|1E(i)
ss
1E(i)

conc

]

6
1
N

logE

e∑`

i=1N
∫

logKη (λ)µ̂Φ(i)(X(i))(dλ) ∏̀
i=1

 N∏
j=1

(1 + |λ(i)
j |1|λ(i)

j |>K
)

1E(i)
ss
1E(i)

conc


6 `(2ε1(N) + t) +

∑̀
i=1

∫
R

logKη (λ)µ(i)
N (dλ) +

∑̀
i=1

1
`N

logE

 N∏
j=1

(1 + |λ(i)
j |1|λ(i)

j |>K
)`


where we use Hölder’s inequality in the last line. Using the assumption (A.2) and arguments as in

the one-determinant case, we use this to find

lim sup
N→∞

(
1
N

logE
[∏̀
i=1
|det(H(i)

N )|1E(i)
ss
1E(i)

conc

]
−
∑̀
i=1

∫
log|λ|µ(i)

N (dλ)
)
6 0.

To conclude the upper bound, write E(i) = E(i)
ss ∩ E(i)

conc. We expand

E
[∏̀
i=1
|det(H(i)

N )|(1E(i) + 1(E(i))c),
]

as a sum over 2` terms, each of which has a product of ` determinants and a product of ` indicators.

We just studied the term with every indicator on E(i), and now claim that any term with at least

one indicator on the complement of E(i) does not contribute. Indeed, suppose for concreteness that

the indicator 1(E(1))c appears; then the term is bounded above by

E
[∏̀
i=1
|det(H(i)

N )|1(E(1))c

]
6

(∏̀
i=1

E[|det(H(i)
N )|`(1+δ)]

1
`(1+δ)

)
P((E(1))c)

δ
1+δ

according to Hölder’s. Using the new assumption (A.3), we proceed as in the proof of Lemma 2.2.4

to complete the proof of the upper bound.
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The lower bound is easier to generalize; by following the proof of Lemma 2.2.5, we find

1
N

logE
[∏̀
i=1

e
N
∫

(log|λ|−logη(λ))µ̂Φ(i)(X(i))(dλ)
1E(i)

gap
1E(i)

ss
1E(i)

conc

]
> −ε̃2(N)

with

ε̃2(N) = `

(
pb
2 log(1 + e2Nε

η2) + η2

2w2
b

)
− 1
N

logP
(⋂̀
i=1
E(i)

gap, E(i)
ss , E(i)

conc, E
(i)
b

)
,

which tends to zero since each of the events E(i)
··· has probability tending to one.

Here is the analogue of Theorem 2.1.2.

Theorem A.2. (Concentrated inputs) Fix ` ∈ N, and suppose that each of the matrices

(H(i)
N )`i=1 satisfies the assumptions of the one-determinant Theorem 2.1.2 with measures µ(i)

N . Then

(A.4) holds.

Proof. For the upper bound, we mimic the proof of the one-determinant case, using Hölder’s to

obtain terms of the form E[e
`N
∫

logη(λ)(µ̂
H

(i)
N

−E[µ̂
H

(i)
N

])(dλ)
]1/`; we simply absorb this ` into the Lip-

schitz constant of logη. The lower bound is generalized as in the convexity-preserving-functional

case, Theorem A.1.

We give two corollaries.

Corollary A.3. (Products of ` Wigner matrices with 2` + ε moments) Fix some ε > 0,

and let (µ(i))`i=1 be a collection of centered probability measures on R with 2` + ε finite moments

and unit variance. Let W (i)
N be a real symmetric Wigner matrix corresponding to µ(i). Then for

every collection (E(i))`i=1 we have

lim
N→∞

1
N

logE
[∏̀
i=1
|det(W (i)

N − E
(i))|

]
=
∑̀
i=1

∫
R

log |λ− E(i)|ρsc(λ) dλ.

Proof. We use Theorem A.1, verifying its assumptions as in the case of one Wigner matrix. We

need 2` + ε moments in the verification of (A.2) and (A.3) as follows: Dropping (· · · )(i) from the
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notation and arguing as in the one-point case, we find

E

 N∏
j=1

(1 + |λj |1|λj |>eNε )
`

 6 E

 N∏
j=1

(
1 + 10

N∑
k=1
|Bjk|

)`,
where B is the matrix of tails, which has independent entries up to symmetry. When we expand

and factor the right-hand side, entries of B now appear with power at most 2` (instead of 2 before).

Similarly, to verify (A.3) we mimic the original notation and find

|det(WN + E)|`(1+δ) 6 (N !)`(1+δ)
∑
σX

`(1+δ)
σ

N !

and E[X`(1+δ)
σ ] is finite because we have finite 2`(1 + δ) moments.

Corollary A.4. (Products of ` non-invariant Gaussian matrices) If (H(i)
N )`i=1 are Gaus-

sian matrices with a (co)variance profile satisfying the requirements of Corollary 2.1.8.B, or block-

diagonal Gaussian matrices satisfying the requirements of Corollary 2.1.9 – or a mixture of both –

and µ(i)
N are the corresponding MDE measures, then

lim
N→∞

(
1
N

logE
[∏̀
i=1
|det(H(i)

N )|
]
−
∑̀
i=1

∫
R

log|λ|µ(i)
N (λ) dλ

)
= 0.

Appendix B: Edge behavior of general free convolutions with semicircle

Recall the notation of Section 3.5.2 for the free convolution of a measure µD with the semi-circular

distribution of variance t, and for its left edge:

µt = ρsc,t � µD,

`t = l(µt)

mt(z) =
∫
R

µt(dλ)
λ− z

.
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Recall also the notation µt(·) for the density of µt.

The following result might be of independent interest.

Proposition B.1. Any free convolution with semicircle decays at least as fast as a square root at

the extremal edges, in the following sense: For any compactly supported measure µD and any t,

there exist c, ε > 0 such that

µt(x) 6 c
√
x− `t for x ∈ [`t, `t + ε].

On the one hand, square-root decay is of course achieved if µD = δ0 (so that the free convolution

is semicircle). On the other hand, Lee and Schnelli have presented a family of examples where decay

at the edge is strictly faster than square root [114, Lemma 2.7]. Thus the power in this result cannot

be improved. We also mention works providing sufficient conditions on µD for a matching lower

bound, i.e., to ensure that extremal-edge decay is exactly square root, such as [21, Theorem 2.2]

(which actually considers free convolution between two Jacobi measures, not our special case when

one of them is semicircular).

This result also complements [49, Corollary 5] of Biane, which shows that decay near any edge

is at least as fast a cube root. As Biane shows, this is in fact the correct power at a cusp when

two connected components of the support merge. Thus the “extremal” restriction in our result is

necessary.

Proof. We adapt arguments of Biane [49] as follows. Biane considers the function vt(u) : R→ [0,∞)

defined by

vt(u) = inf
{
v > 0 :

∫
R

µD(dx)
(u− x)2 + v2 6

1
t

}

and the open set Ut = {u ∈ R : vt(u) > 0}, then defines a certain homeomorphism ψt : R → R

(whose exact form is not important to us now) and proves that

µt(ψt(u)) = vt(u)
πt
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for all u ∈ R.

On the one hand, by [49, Corollary 3], we have

ut := ψ−1
t (`t) = `t + tmt(`t).

This is at most l(µD) by (3.5.35), and in fact the inequality is strict since mt(`t) > 0:

ut < l(µD). (B.1)

On the other hand, let x be such that µt(x) > 0. Then x = ψt(u) for some u ∈ Ut, and adapting

the proofs of [49, Proposition 4, Lemma 5] we obtain

∣∣µt(x)µ′t(x)
∣∣ 6 |vt(u)v′t(u)|

π2t2ψ′t(u) 6
|v′t(u)|

2π2t|vt(u)|(1 + v′t(u)2) 6
1

2π2t
· 1
|vt(u)v′t(u)| . (B.2)

But the proof of [49, Lemma 5] shows that

vt(u)v′t(u) =
∫
R

(x−u)
((u−x)2+vt(u)2)µD(dx)∫

R
1

((u−x)2+vt(u)2)µD(dx)
> l(µD)− u.

For u in some [ut, ut+ε] (corresponding via ψt to x in some [`t, `t+ε′]), this lower bound is strictly

positive by (B.1). By (B.2), this suffices.

Appendix C: Computational details in large-deviations examples

We give the computational details for the example in Section 5.2.4. Using the equivalent [101,

Theorem 6] formula

J (β)(ν, θ,M ) = θRν

( 2
β
θ

)
− β

2

∫
log
(

1 + 2
β
θRν

( 2
β
θ

)
− 2
β
θy

)
ν(dy),
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valid if 0 6 2
β θ 6 Gν(M ), and the constrained equation (5.2.6) implicitly defining θ(β)

x , one can see

that

I(β)(x) = (θ(β)
x )2

β
+ β

2

∫
log
(
x− 2

β
θ(β)
x − y

)
µD(dy)− β

2

∫
log(x− y)(ρsc � µD)(dy)

= β

4

( 2
β
θ(β)
x

)2
+ β

4 log
[(
x− 2

β
θ(β)
x

)2
− a2

]
− β

2

∫
log(x− y)(ρsc � µD)(dy)

(C.1)

for x > r(ρsc � µD). We invert Kρsc�µD(y) =
√

1+4a2y2+2y2+1
2y to obtain Gρsc�µD(y) for y > r(a),

choosing branches according to the requirement that Gρsc�µD(y) be decreasing on (r(ρsc�µD),∞);

if y > r(a), this yields

Gρsc�µD(y) = 2
3

[
y −

√
−3 + 3a2 + y2 sin

(
π

3 −
1
3 arctan(d(y))

)]

with d as in (5.2.9). In the limit y ↓ r(a) we obtain

Gρsc�µD(r(a)) = c(a)

with c as in (5.2.8). This gives us the bounds on the constrained problem (5.2.6); since KµD(y) =
√

1+4a2y2+1
2y , this has the solution

2
β
θ(β)
x = 2

3

[
x−

√
−3 + 3a2 + x2 sin

(1
3 arctan(d(x))

)]
.

if x > r(a). On the other hand, since ρsc � µD decays at most like a cube root near its edges [49,

Corollary 5], we can differentiate under the integral sign to obtain

∫
log(x− y)(ρsc � µD)(dy) =

∫ x

r(ρsc�µD)
Gρsc�µD(t) dt+

∫
log(r(ρsc � µD)− y)(ρsc � µD)(dy).
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We compute the second term on the right-hand side by setting x = r(ρsc�µD) in (C.1), since then

I(β)(x) = 0 and 2
β θ

(β)
x = Gρsc�µD(r(ρsc � µD)) = c(a); this yields

∫
log(r(ρsc � µD)− y)(ρsc � µD)(dy) = 1

2(c(a)2 + log((r(a)− c(a))2 − a2)).

This gives the stated formula for I(β)(x).
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