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Abstract

This thesis considers Hermitian random matrices that are non-invariant, meaning they have few
symmetries. First, we study the asymptotics of their determinants as the matrix size diverges, and
the effects of these on the geometry of high-dimensional random functions. Second, we study large
deviations of their extremal eigenvalues.

The classical Kac-Rice formula provides a bridge between random geometry and random ma-
trices. It relates the expected number of critical points of a real-valued random function on RV, on
the one hand, to the expected absolute value of the determinant of an N x N random matrix, on
the other hand. In the large-N limit, it thus reduces counts of critical points to determinant asymp-
totics for large random matrices. We are especially interested in “non-invariant” random functions,
meaning functions with few (distributional) symmetries. For such functions, the corresponding
random matrices are also “non-invariant.” In particular, large-deviations principles, crucial in past
studies of highly symmetric random functions, are usually not available.

We start by identifying simple criteria that yield exponential asymptotics of these large deter-
minants. These criteria are satisfied by a wide variety of matrix models, including Wigner matrices
and sample covariance matrices with near-optimal 2+ ¢ finite moments; Erdés-Rényi matrices with
near-optimal sparsity p > N¢/N; band matrices with any polynomial bandwidth W > N¢; and
Gaussian matrices with a variance profile.

Then we use our determinant asymptotics and the Kac-Rice formula to study the exponential
count of critical points, called “landscape complexity,” for three models of random functions. First,

we consider the “elastic manifold,” a classic model in statistical physics of particle configurations
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with self-interactions in a disordered environment, where we confirm formulas of Fyodorov and
Le Doussal on a phase transition between the simple and glassy regimes. Second, we introduce a
new, general signal-plus-noise model, where we find a surprising threshold distinguishing positive vs.
zero complexity, with universal near-critical behavior close to this threshold. Third, we characterize
complexity of bipartite spherical spin glasses, a sandbox model of spin glasses beyond the classical
mean-field setup.

Finally, we study additively deformed Wigner matrices with certain sub-Gaussian entries. We
establish a large-deviations principle for their extremal eigenvalues, building on recent techniques

of Guionnet-Husson and Guionnet-Maida.
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Chapter 1

Introduction

1.1 RANDOM DETERMINANTS: OUR RESULTS

In the first part of this thesis, we study the quantity E[|det(Hy)|], where Hy is an N x N real-
symmetric random matrix, and identify its leading-order exponential asymptotics for a wide variety
of matrices Hy. These asymptotics can be guessed as follows: Writing fif, = % Zfil Ox;(Hy) for

the empirical spectral measure of Hpy, one observes
E[|det(Hy)|] = E[eN J sy ()

(interpreted appropriately if an eigenvalue vanishes). If fif, concentrates about some deterministic

limiting measure i, this suggests asymptotics of the form

1
lim — logE[|det(Hy)]] :/log|)\\,uoo(d/\), (1.1.1)
N—oo N

although to prove this, one needs to understand the logarithmic singularity and how it interacts
with the concentration of the empirical spectral measure. We are able to overcome these issues,

and obtain the following result.



Theorem 1.1.1. (Chapter 2 in this thesis, from Ben Arous-Bourgade-M. [35]) We find

hm —10gIEHdet (Hn)l] /log])\moo A) dA

when Hy is one of the following:

o o Wigner matriz with (near-optimal) 2+ € finite moments (and oo is the semicircle law psc

with density

4 — 2
ﬁdx

Psc (dx) = o

with respect to Lebesgue measure),

e o sample covariance matriz with (near-optimal) 2 + € finite moments and some regularity

assumptions on the entries (and poo is the Marcéenko-Pastur law),

e the adjacency matriz of an Erdés-Rényi random graph with parameter p > N¢/N (and poo is

the semicircle law),

e a one-dimensional band matriz with any polynomial bandwidth W > N¢ and some reqularity

assumptions on the entries (and po s the semicircle law), or

o the free-addition model Ayx + ONBNOJT\}, where Ay and By are real, deterministic, and
diagonal, and O is Haar orthogonal (and p~ is the free convolution of the limiting empirical

spectral measures of Ax and By ).

In the Gaussian case, we find

]\;gnoo(]iflogEHdet(HN)H - /log|)\|uN()\) d>\> ~0 (1.1.2)

when Hy is one of the following:

e Gaussian with a mean-field (co)variance profile and/or a mean, or



e Gaussian with zero blocks in special places (for example, An+ ( Vgl 1/32 ) where Ay is determin-

istic and the W;’s are independent matrices from the Gaussian Orthogonal Ensemble (GOE),

meaning the entries (W;);i are independent up to symmetry with (W;) ;i ~ N (0, %))

In these Gaussian cases, the measures py arise from the theory of the so-called Matrix Dyson
Equation (MDE), developed by Erdés and collaborators in papers such as [5, 6]. In most natural

cases, they have a weak limit oo for which (1.1.1) holds.

Versions of (1.1.1) have appeared in the literature, mostly in cases when Hy enjoys properties
we could describe as “invariance” — a term more evocative than precise, but roughly meaning that
Hpy exhibits a high degree of symmetry, and therefore a high degree of integrability. For example,
when Hy is a GOE matrix, one can give an exact expression at finite N for E[|det(Hy)|] in terms
of Hermite polynomials [84]. Other highly symmetric models include the classical compact groups,
and in fact the whole family of invariant ensembles, or matrices whose law admits a density with

respect to Lebesgue measure of the form ZN,lﬂ,V exp(—gN TrV(H)) for some “potential” function

V :R — R. (In my usage, “invariant ensembles” are a strict subset of “models enjoying properties
we could describe as invariance.”)

The novelty in our result is that the matrices are “non-invariant,” meaning they exhibit few
symmetries. One archetypal example is a full-rank additive deformation of GOE. Often, observables
of non-invariant random matrices do not admit tractable finite-N formulas, but one can still hope
for large-N asymptotics such as (1.1.1).

The goal of this thesis is to contribute to the general theory of non-invariant random matrices,
finding both old and new phenomena, and to apply them to the study the geometry of high-
dimensional random functions — a research program known as “landscape complexity,” which we
describe in Section 1.2. In Section 1.3 we give some classic results in this program, which motivate
our new complexity results in Section 1.4. After circling back to a history of random determinants
and a discussion of our new methods in Section 1.5, in Section 1.6 we give our results on large
deviations for non-invariant random matrices, and remark on their possible future interplay with

landscape complexity. Finally, in Section 1.7 we discuss open questions.



1.2 LANDSCAPE COMPLEXITY: OVERVIEW

Consider a smooth, Gaussian random function Xy : RY — R, perhaps a Hamiltonian from sta-
tistical physics or a loss function from data science, which we think of as a “landscape.” We wish
to understand the geometry of this function for large N, specifically through the random variable
Crt(Hy), which stores the (random) number of critical points of 7. This random variable is often

exponential in N, so we consider the real number
Y= lim — log E[Crt(Hy)]
N Ngnoo N it ' Nob

which is known as the (annealed) complexity of the family (Hn)3—;. Much of this thesis is devoted
to techniques to compute Y and related quantities when the landscape H y is non-invariant, meaning
it exhibits few symmetries. One important variant is ¥, which is the complexity specifically of
local minima among all critical points.

Even though we lose information passing from Hy to Crt(Hy), the complexity is still conjec-

tured to be a good predictor of interesting phenomena about Hy. For example:

e The sign of X is useful for predicting the dynamics of optimization on Hpy. For example,
perhaps Hy is a likelihood function in some statistical problem, which is random because it
depends on random samples. It might be the case that the maximum likelihood estimator
(the MLE, which is the argmax of Hy) is known to be a good, consistent estimator — but
that we do not know a good algorithm with which to quickly compute it. This is known as a
computational-to-statistical gap, and a variety of research in data science is concerned with
studying such gaps. One reason local algorithms like Langevin dynamics might fail is if they
get trapped in a large number of critical points of Hpy, and this suggests the following rule

of thumb:

— If ¥ <0, then optimizing Hy should be easier.

— If ¥ > 0, then optimizing Hy should be harder.



e Variants of ¥ can be useful for locating ground states. Write X(¢) for the exponential asymp-
totics of the number of critical points of Hy at which Hy takes values below ¢ (or Nt,
depending on the scaling). Then X(-) : R — R is a non-decreasing function, tending as
t — 400 to the complexity X of all critical points. By Markov’s inequality, the quantity
inf{t : ¥(¢t) = 0} is a lower bound for the ground state. (To find a matching upper bound,

one has to show concentration of Crt(# ) about its mean.)

e Finally, if H is the Hamiltonian of some model in statistical physics, there should be some
relationship between variants of ¥ and replica symmetry/replica symmetry breaking. To the
best of our knowledge, the precise relationship is still being worked out even in the physics
literature, but here is a heuristic example: At very low temperature, the Gibbs measure should
be dominated by (neighborhoods of) local minima with very low energy levels. If there are
many of these arranged in some hierarchy (which could be studied via the quenched analogue
of X(t) above when ¢ is close to the ground state), then the model might have broken replica
symmetry; but if there are few of these, then the model might be replica symmetric. See

Fyodorov and Williams [94] for one model where this connection can be proven.

We emphasize that these are not theorems, and indeed the extent to which they are true is still an
area of active research.

The best way to compute X is through a classical result known as the Kac-Rice formula, which
forms a bridge between random matrices and random geometry. In this case, the Kac-Rice formula

reads

E[Crt(Hy)] = /R N E||det(V*Huy (2)||VHn () = 0]¢2(0) dz, (1.2.1)

where ¢,(0) is the density of the (Gaussian) random vector VH y(z) evaluated at 0 € RY. (Kac-
Rice is usually stated over a compact set, but for simplicity we assume the common situation where
one can pass to all of RV by monotone convergence.) The books [2, 17] give a thorough introduction
to the Kac-Rice formula. We remark that, between a variety of differential-geometric conditions

and the difficulty of conditioning beyond the Gaussian regime, Kac-Rice is effectively only available



when Hy is Gaussian (or a function of a Gaussian).
In many models, the inner expectation in (1.2.1) does not depend on z € RV, and [pn ¢,(0) dz

is easy to understand, so all the difficulty in computing ¥ lies in the asymptotics
lim — log E{|det (Hx )] (1.2.2)
i, 7 B Elldet(Fw)l, 2

where Hy is a random matrix distributed as the Hessian of Hy (at, say, z = 0), conditioned on
criticality. An analogue of Kac-Rice for local minima inserts an indicator 1{V?Hy(x) > 0} inside
the conditioned expectation, restricting the conditioned Hessian to be positive semi-definite, and
this indicator persists in the analogue of (1.2.2).

In many of the landscape models studied to date, the random function Hy is invariant, and
thus the random matrix Hy is invariant. In particular, large deviations principles (LDPs) are often
available for its empirical spectral measure or extreme eigenvalues, and these LDPs have been an
important input for past results on invariant models. Some of these models are described in Section
1.3.

But when the random function Hpy is non-invariant, the random matrix Hpy is also non-
invariant. Theorem 1.1.1 therefore allows us to give new results in landscape complexity, which are

described in Section 1.4.

1.3 LANDSCAPE COMPLEXITY: HISTORY

Our models of study are inspired by three important results in landscape complexity, which we
now present. A more extensive history is given in Chapter 3. In comparison with these models,
our models will have fewer symmetries: for example we give a signal-plus-noise model where the
signal is anisotropic rather than isotropic, and a spin-glass model where spins interact in multiple

different groups rather than all on equal footing.



Soft spins in an isotropic well. The first model does not have a consistent name in the literature:
Sometimes it is thought of as a “zero-dimensional elastic manifold,” but we will refer to it as “soft
spins in an isotropic well.” It is the subject of Fyodorov’s breakthrough 2004 paper [84], which is

also the first paper in modern landscape complexity, and it is given as
_ By 2
Hn(z) = 5 llzl” + Vi (), (1.3.1)

where 1 > 0 is a parameter and Vy(z) is a centered, isotropic Gaussian field with covariance

structure given by

Evi Vi) = (1)
2N
for some function B : Ry — R (think B(r) = e™", for example). Schoenberg classified all possible
such functions B (see (3.2.1)), and we add a very mild regularity assumption. Typically Vx has
many critical points, whereas the quadratic term only has one, and one should thus expect a phase
transition in p: When p is quite small, the noise term should dominate, the model should be
“disordered,” and H should have many critical points. But when pu is quite large, the quadratic
“signal” should dominate, the model should be “ordered,” and Hy should have few critical points.

This phenomenon is sometimes called “topology trivialization,” and it is the intuition for the

following theorem, which combines results of Fyodorov and Fyodorov-Williams.

Theorem 1.3.1. [84, 9/] Write X% (u, B) (respectively, ¥™®(u, B)) for the complexity of total
critical points (respectively, just local minima) of this model. These depend on B only through the

scalar B"(0), and

2 .
o —1) - log( B‘f,(o)) if 1 < pe 2= /B0,

54 (1, B'(0)) =

0 if o= pe,

: [—3 —log( g ) + L _H if p < pe,
Emin(,u,B//(O)) _ 2 (B (0)) \/B”(O) B"(0)

0 if b= pe



(Actually, Fyodorov and Williams studied a more general model, replacing the radial quadratic
term &||z||* with a radial term NU(%) for some fixed, convex U.)

We make several observations about these functions that will reappear in the sequel. First, the
phase transition is continuous, and the near-critical behavior is quadratic for total critical points
but cubic for local minima. Second, it is not obvious that the same critical value u. should appear
both for total critical points and for local minima; one might have guessed that, for fixed B”(0),
there was a range of u values with zero complexity for local minima but positive complexity for
total critical points (say from many saddle points), and this turns out to be wrong. Although the
theorem is for the large-N limit, Figure 1.1 displays a visible phase transition when N = 2 and p

varies.

Spherical spin glasses. The second important result is the work of Auffinger-Ben Arous-Cerny

and Auffinger-Ben Arous on spherical spin glasses [10, 9]. For integer p > 2, the pure p-spin

Hamiltonian Hyy, : SN=1 5 R is given by
1 N
Hyp(o) = NG D/2 Z Jir,.ipCiy « - - O,
i1yenyip=1
where 0 = (01,...,0n), the sum is over all p-tuples, and the J;, . ;, are i.i.d. standard Gaussians.

Spin-glass mixtures are prescribed by a sequence § = (/Bp);iQ of positive numbers satisfying the

decay condition Z;’;Q 2P, < oo, and are given by the Hamiltonian

Hy(o) = i BpHN p(0),

p=2

where the different pure-p spin Hamiltonians are independent. These exhibit markedly different
phenomena from the soft-spins model: For any model that is not a pure 2-spin, the total complexity
of local minima (and thus of critical points) is positive, so there is no order-disorder phase transition.
Instead, the interesting question is about the location of critical points in energy space. That

is, restricting ourselves to pure p-spin models for exposition, one studies the complexity %,(t)



respectively, ¥, 1 (t)) of critical points (respectively, critical points of fixed index k) at which the
j

Hamiltonian takes values at most Nt. For pure p-spin models, among the many results of [10] are

the following.

CW:
€.0233%5)
£/ B R3R,

mv AR
15 93933593
2952

RRANCS
AL
A RRA
953, 3 %! SRR
33335502 k@’w n

o
22

25 LR

A
SRR ;;?????xﬁ?

(¢) Many fewer crit. points when p = 20. (d) Almost no crit. points when p = 30.

Figure 1.1: Numerical (discretized) samples of Hz on [—1,1]? with the same noise and four dif-
ferent choices of p. Precisely, these are scatterplots of Ha(xz) values for x on a 41 x 41 lattice,

with an overlaid mesh fit, made with Matlab. Here B(r) = exp(—80r), meaning E[Va(x)Va(y)] =
2exp(—20]|z — y||).



Theorem 1.3.2. [10] Fiz p > 3 and consider the threshold

1
Eoo = Eno(p) = 2 I’T

and the function I; : (—oo, —Ex] — R given by

9 [~Ew
Il(u):ET/ VY2 — B3 dy.
oo YU

The functions ¥, and X, 1 defined above are given explicitly as

3log(p —1) = gp5u® = Li(u)  if u < — B,
Ep(t) = %log(p —-1)— 4&;721)13, if —FEe <u<0,
3log(p—1) if 0 < u,

slog(p—1) — %UQ —(k+1)1(uv) ifu<—Ex,

Jlog(p—1) — 52 ifu> —Es.

Furthermore, for any k > 0 write Ey, = Ei(p) for the unique solution to ¥, (—Ex(p)) = 0; then

Ey > Ey > Ey > -+ with limy_, o Ex(p) = Exo(p), and for any € > 0 we have

1
lim sup N2 log P(exists crit. point of index k above level — N(Ex(p) —¢)) <0, (1.3.2)

N—oo

1
lim sup N log P(exists crit. point of index > k below level — N(E(p) +¢€)) < 0.

N—oo

This result establishes a layered structure, where most critical points of index k are found in
the band [—-NEy, —NEy]. So the critical points with lowest energy are primarily local minima;
then in a higher-energy band one starts to see index-one saddle points; the index-two saddle points

in the next higher band, and so on.

10



Spiked-tensor model. Finally, the third important result is the work of Ben Arous, Mei, Mon-
tanari, and Nica on the spiked-tensor model [43]. In this model, which depends on integer k > 3,

one is given a sample of the random function f : S¥~! — R defined by

N
1
k
flo) = Mu,0)" + —= Z Giy,..ix iy * " Ty,
2N U1yl =1
Here A\ > 0 is a signal-to-noise ratio; v € SV~! is an unknown signal we are trying to recover

by maximizing our sample(s) of f; and (G, . i, )i<i,. . iz<n are i.i.d. standard Gaussians. When
A = 0, we recover the pure spherical k-spin glass, which has positive complexity. But for large
A, one expects the landscape to trivialize close to u. The argmax of f is the maximum-likelihood
estimator for wu.

Given Borel M C [-1,1] and E C R, write Crty (M, E) for the number of critical points o of
f at which (o,u) € M and f(o) € E. By rotational invariance, E[Crty (M, E)] does not depend

on the choice of w.

Theorem 1.3.3. [43] For each fized A, there is an explicit, relatively simple function Sy : [—1,1] X

R — (RU{—00,+00}) such that, for any Borel M and E, we have

N—oo

1
limsup{NlogE[CrtN,*(M,E)] — sup Si(m, e)} <0,

mEM,eEE
1
liminf{ —log E[Crty (M, E)] — sup  Si(m,e)p > 0.
N—oo | N meMPO,e€ E°

There is another A-dependent function Sy satsfying an analogue for local mazrima.

By analyzing S, and Sy as A varies, Ben Arous et al. suggest the following qualitative picture

for some values Ay > A. > 0:

e For 0 < A < A, most local maxima o have small correlations (o, u) with the planted signal

and small function values f(o).

e For A € (A, \y), there are local maxima o with large correlations (o,u), but they have

11



smaller function value f(o) than other local maxima with small correlations, so the maximum-

likelihood estimator is still bad.

e For A > )y, there are local maxima o with large correlations (o, u) and large function value

f(0).

They also note the following: On the one hand, the best known algorithm requires A 2 N (k=2)/2 to
succeed (meaning to achieve positive correlation with «). On the other hand, the complexity results
suggest that there are an exponential number of local maxima in the annulus {|(o, u)| < A~/ (*+=2)}
and a uniformly random initialization on the sphere lies outside of this annulus with positive

(k=2)/2, Although this is just an observation, it is consistent

probability in the same regime A\ > N
with a claim like “local algorithms fail if they are initialized in regions of positive complexity.”
In general, the matrices that appear in these models are covered by our result on determinant

concentration.

1.4 LANDSCAPE COMPLEXITY: OUR RESULTS

In this section we describe our results on landscape complexity for three models. The first two

generalize the soft-spins model of [84], and the third is related to the spherical spin glasses of [10].

Elastic manifold. The elastic manifold is a classical model in statistical physics that assigns a
random energy to deterministic configurations of L¢ points lying in RY. There are two contributions
to the energy: Each point behaves as the isotropic soft-spins model (1.3.1), plus there are nearest-
neighbor interactions between points. More formally, given positive integers L (“length”) and
d (“internal dimension”), we write Q for the lattice [1,L]? understood periodically. A point

configuration will be written as a deterministic u :  — R, and given positive numbers y (“mass”)

12



and ¢ (“interaction strength”), we assign such a point configuration the random energy

Hiu) = Y (plu@)]? + Vv (u(@),2) + > —tAg(u(@), uly)),
€N z,y€eq)
where A, is the (z,y) entry of the L? x L% matrix A, which is the periodic lattice Laplacian, and
where the (Vn (-, z))zcq are centered isotropic Gaussian fields, independent for different = values,
each with covariance E[Vy (y1,z)Vn(y2, z)] = NB(M) for some function B satisfying (3.2.1)
(scaled here, for exposition, so that certain factors in the following simplify).

Notice that H contains three competing influences: (i) a quadratic confining potential with
strength p that keeps points close to the origin; (ii) the elastic (Laplacian) term with strength ¢
that prefers ordered point configurations; and (iii) random spatial impurities (the Gaussian fields
V) with strength stored in B that prefer disordered point configurations. Figure 1.2 shows these
three competing influences visually.

In this context a “critical point” is a configuration u that is critical for the Hamiltonian (meaning
such that Oy, H[u] = 0 for all i and all z), and a “local minimum” is a critical point that also
locally minimizes the Hamiltonian against small perturbations of the points. Equivalently, one

can think of H as a Gaussian random function defined on (RV)? = RN L

, in which case “critical
point” has its usual meaning. We want to count critical points in the regime when L and d are
fixed but N — +o00. Notice that, if y is very large, then point configurations get pushed towards
zero, and there should be few critical point configurations; whereas if p is very small, then point
configurations have more freedom to roam about space, and there should be many critical point
configurations. This is the content of the following theorem.

Write ¥(u) = X(p, L, d, t, B) for the complexity of critical points, and X (1) = Xet(pt, L, d, t, B)

for the complexity of local minima.

Theorem 1.4.1. (Ben Arous-Bourgade-M. [36]) Write fi_a for the empirical spectral measure of

the Laplacian —A, and for each t, let the “Larkin mass” pe = pe(L,d,t) be the unique positive
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(a) u(1) contribution. (b) u(2) contribution. (¢) u(3) contribution. (d) u(4) contribution.
u(l)

(e) The elastic contribution to the configuration energy is small, because the sum
(u(1),u(2))+(u(2),u(3))+ (u(3),u(4)) +(u(4),u(1)) of inner products between points
whose indices are nearest neighbors in the underlying lattice is small.

Figure 1.2: Informal schematic of one low-energy elastic manifold configuration when d =1, L = 4,
and N = 2. The four manifold points u(1), u(2), u(3), and u(4) are indicated by squares. In the
top four subfigures, which indicate the contributions to the total energy made by each manifold
point on its own, each manifold point sees its own (independent) Gaussian environment and tries
to avoid points of high energy cost (represented by circles of the same color) while staying close
to the origin. In the bottom subfigure, these environments are overlaid, showing that the points
have achieved their separate goals while also keeping their lattice-neighbor inner products small.
The inner products (u(1),u(3)) and (u(2),u(4)) do not contribute, because {1,3} and {2,4} are
not lattice neighbors. Perhaps this configuration is a local minimum, meaning the energy #[u]
increases if we slightly perturb any of the images u(i). We are trying to count such minima (and
total critical points) in the N — 400 limit, when these four points are immersed not in the plane
but in a high-dimensional space. This figure is inspired by [95, Figure 2].
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solution to

/ ﬂ_iA =1

R (fe + t)\)Q

If = pie, then X(p) = Zst(p) = 0. If o < pe, then X(u) > Eg(p) > 0, and these quantities are

given by relatively explicit formulas involving the log-potential of a certain free-convolution measure.
Alternatively, for each fixed u and t one can rescale the noise B and find a similar phase

transition; we show that the complexity of total critical points vanishes quadratically near this

phase transition, while the complexity of local minima vanishes cubically.

This result solves a problem of Fyodorov and Le Doussal [88], who studied the complexity of
this model and came to the same conclusion, assuming determinant asymptotics of the type (1.1.1)
which we can now verify with Theorem 1.1.1.

The elastic manifold has long attracted interest in its own right, both for its roughness exponent
and a phenomenon it displays called (de)pinning. The roughness exponent captures, for example,
how rugged an elastic interface is at large spatial distance, and attempts to compute it inspired
early technical developments of Fisher in functional renormalization group methods [80] and of
Mézard and Parisi in replica symmetry breaking [122]. (De)pinning is a nonlinear response to
applied force. Precisely, the point configurations have a preferred position in space, and they only
move from this position if an applied force f is larger than the so-called depinning threshold f..
Pinning is critical in applications: for example, we can effectively store information on a magnetic

hard drive precisely because the data is “pinned” against, e.g., small temperature fluctuations.

Soft spins in an anisotropic well. Next we consider the Hamiltonian
1
Hy(u) = §<U,DN’LL> + Vi (u),

where Viy is a centered isotropic Gaussian field with E[Vy(x)Vy(y)] = NB(%) as in (1.3.1),
and where (Dy)_; is a sequence of deterministic, diagonal matrices without outliers whose empir-

ical spectral measures jip, tend weakly to some pp, a limiting probability measure which should be
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compactly supported in (0,00). That is, the confining potential is no longer radial, but has mean-
ingfully different directions given by the entries of Dy, and the potential is ultimately characterized
by a probability measure rather than by a scalar. For example, if Dy = diag(1,...,1,2,...,2), then
the confining potential has two directions, and up = %(51 + d2); but one can take general “signal
measures” pp which are not combinations of delta masses. We call this model “soft spins in an
anisotropic well.” Of course, in the special case Dy = pId, we recover the original model (1.3.1) for
soft spins in an isotropic well. Although our results are for the N — +oo limit, Figure 1.3 displays
how changing Dy can qualitatively change the number of critical points when N = 2.

It is natural to expect an order/disorder phase transition for this problem, depending on some
scalar observable of up. For example, consider the case up = %(61 + d2). One might guess that
the complexity phase transition behaves as if pup were J; (meaning worst-case complexity, or the
left endpoint of pp), since perhaps there are many critical points “in the flat (one) direction.” On
the other hand, one might guess that the complexity phase transition behaves as if up were do
(meaning best-case complexity, or the right endpoints of up), since perhaps there are few critical
points “in the steep (two) direction.” Finally, one might guess that the complexity phase transition
behaves as if up were d3/o (meaning average-case complexity, or the mean of up), since perhaps
these two directions just average out.

All of these guesses are wrong. In fact, the complexity phase transition behaves as if up were

0 N More generally, the right observable of up is, surprisingly, the negative second moment.

Theorem 1.4.2. (Ben Arous-Bourgade-M. [36]) There exist relatively explicit functions
EtOt(MDyt)a Emin(u[),t)

such that the complexity of total critical points of Hy is described by X (up, B"(0)) and the

complexity of local minima of Hy is described by X™®(up, B"(0)). Furthermore, these functions
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are either both zero or both positive; we have

-1
S up 1) = S upst) =0 f and only if ¢ <t = to(up) = { [ @) ;
R

1)

(c) Many fewer crit. points when Dy =6+ (§9). (d) Almost no crit. points when Dy =10-(§79).

Figure 1.3: Numerical (discretized) samples of Ha on [—1, 1]? with the same noise and four different
choices of signal Dy. Precisely, these are scatterplots of Ha(x) values for x on a 41 x 41 lattice,
with an overlaid mesh fit, made with Matlab. Here B(r) = exp(—80r), meaning E[Va2(x)Va(y)] =
2exp(—20]|z — y|?).
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and for slightly supercritical t we have

B (up, t) = cror(kp) - (¢ — te)® + O((t — te)°),

S (up, t) = cmin(pp) - (t = te)” + O((t = te)*),

with explicit prefactors ciot(4D), Cmin(UD)-

While the negative-second moment criterion is new, one can think of this as a universality result
for the quadratic near-critical behavior of total complexity, and the cubic near-critical behavior of
complexity of local minima, as these powers already appeared in the isotropic case.

We mention briefly a technical result in free probability that we establish during the proof
of Theorem 1.4.2, possibly of independent interest. Biane [49] gave a comprehensive study of
measures of the form “free convolution with semicircle” These measures always admit a density,
but in contrast to semicircle itself, they can have disconnected supports, whose components can
merge at interesting cusps, typically with cube-root decay. Biane showed that all edges and cusps
of such measures decay at least as quickly as a cube-root; we show in Appendix B that at the

extremal edges the decay must be at least a square-root.

Bipartite spherical spin glasses. Finally, we consider a two-species spin glass, called the
“bipartite spherical spin glass,” generalizing the classical spherical spin glasses. Given integers
p,q = 1 and v € (0,1), one defines the pure (p,q,~) bipartite spin glass as the random function

HNpgry : SV x SE=1N given by

HNJ’:QKY(“’ U) = : : : : Jilv"ﬂipv.jl?“'vjquil tee uip/ujl e vjq’

1<, ip SYN 11400, g S(1=7) N

where the J variables are i.i.d. Gaussians with variance N/((yN)?((1—~)N)?). One can also define

the “mixed” Hamiltonian

HN(“: 'U) = Z Bp,qHN,p,q,'y(ua ’U)v

P,q=1

18



for some double sequence (B 4)p.q>1 that decays fast enough.

Theorem 1.4.3. (M. [120]) We find exact variational formulas for the complexity, both of total
critical points and of local minima, for pure models as well as miztures. We also find two interesting

phenomena in the special case of pure models:

e There exists a constant Eoo(p,q,y) > 0 such that, for every € > 0, all local minima have

energy values at most —N(Eso(p,q,7) — €) with all but exponentially small probability.

o Ify= p’fq, then the complexity functions of a pure (p,q,7y) model are exactly those of a pure

P+ q (single-species) spin glass as studied in [10].

Notice that the first phenomenon — of local minima lying in a low-energy band — already
appeared in pure p-spin models (see (1.3.2)). We also note that upper and lower bounds for the

complexity of this model were previously given by Auffinger and Chen [11].

1.5 RANDOM DETERMINANTS: HISTORY

To the best of our knowledge, there is no previous systematic study of determinant asymptotics of
the form (1.2.2). But there are previous works on the size of different random determinants, in two
strands. A fuller history of the study of random determinants is given in Chapter 2.

First, starting in the 1950s, a variety of authors used combinatorics to find formulas for moments
E[det(Hy)*], exact at finite N, for small k, when H is actually non-Hermitian. These are combined

in the following theorem.

Theorem 1.5.1. Let u be a probability measure, symmetric about zero, with unit variance and
fourth moment my4. Let Hy be a non-Hermitian N X N random matrix with i.i.d. entries distributed
according to p, and let U, N be a non-Hermitian p x N random matriz with i.i.d. entries distributed

according to p, with p < N.
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o (Fortet [82])
E[det(Hy)? = N

e (Nyquist, Rice, Riordan [128])

N
SIPRYINCL g LSS EUES
k=0 ’

(m4 - B)ka

and exact formulas for any higher moment when p is Gaussian. (Another proof for the

Gaussian case was later given in Prékopa [152].)

e (Dembo [68])

E[det(UnN(Up,N)T)] = mv
N & P\ (N+2—k)
E[det(UpyN(UpyN)T)ﬂ = m kz::O (]) m(mzl - 3)k7

and exact formulas for any higher moment when u is Gaussian.

These explicit formulas do not admit extensions at other energy values (i.e., for the determinant
of Hy — E, when E € R), or with absolute values, which are what appears in the Kac-Rice formula.

Second, in the last 20 years, different papers in landscape complexity have studied versions
of (1.2.2) when Hy is the relevant random matrix for their particular landscapes, which is often
invariant.

The earlier of these proofs often use the following clever trick, which allows for exact formulas

at finite N: The joint density of eigenvalues of the GOE is proportional to

N
IT 1N —NITLe 5 dn,

1<i<j<N i=1
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SO we can write

E[|det(Hy — = 1d)|] /(ﬁM x') ( I1 ) ﬁ[

1<z‘<j<N

MZ

(1.5.1)

The idea is to recognize z as an eigenvalue of an (N + 1) x (N + 1) GOE matrix, i.e., to
smuggle Hf\;ﬂ)\i — z| into the Vandermonde determinant. This allows one to relate the deter-
minant to the density of states of GOE (i.e., E[fip,]|(x)dz), which is explicit in terms of Her-
mite polynomials, allowing for asymptotic analysis. (In a variant that restricts the index as
E[|det(Hy — xz1d)|1{i(Hy — x1d) = k}], one recognizes = as the kth smallest eigenvalue of an
(N +1) x (N + 1) GOE matrix.) Notice that this argument is specific both (i) to the GOE and
its explicit joint density and (ii) to the perturbation —x Id (it would not work, for example, for the
perturbation —diag(1,...,1,2,...,2)). That is, the trick (1.5.1) is an invariant argument.
Various results of this type are contained in the following theorem, which combines results of
several authors (sometimes in less generality than given there, for conciseness). These were mostly
originally stated as results about landscape complexity (and we discuss them as such in Section

1.3), but here we have rephrased them as results about determinants.
Theorem 1.5.2. Let Hy be an N x N GOFE matrix.

e (Fyodorov [84]) Let & ~ N(0,1/N) be independent of Hy, and let p > 0 be deterministic.
Writing x = (N, p,t) = \/g(,u +t), we have the finite-N formula

N

Blldet(it + (6 + w1l = o= [ (S5 )] [T aves (% " i

1 W2
+ gyt [T Hy(wsisna —u)du)
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where Hy is the kth Hermite polynomial, and the asymptotics

oy L i<,
lim — logE[|det(Hy + (§ 4 p)1d)]] = .
N—oo N

log(p) ifp=>1

e (Auffinger-Ben Arous-Cerngj [10]) Fiz ¢ > 0, and let & ~ N(0,¢/N) be independent of Hy .
Fixz k € N, and write Eggé for the expectation when A is the kth smallest eigenvalue of a

GOFE matriz of size (N +1) x (N +1). Then

Sk

4 INEESY 1 1
et (Hy + &Ly + € 10) = ] = = — Bk e (¥ + 1) (5 - 5. ) 3}

Furthermore, there is an explicit function I(-) such that the kth smallest eigenvalue of a
GOE matriz satisfies an LDP at speed N with the good rate function kI(-) (for the smallest
eigenvalue, this dates back to Ben Arous-Dembo-Guionnet [37]; for k > 1 it was new in [10]).

Thus if ¢ < 1 (equivalently %— 2% < 0) the asymptotics can be found using Varadhan’s lemma.

Finally, in the last five or so years, papers in landscape complexity have started to consider
models beyond the regime of the trick (1.5.1) — that is, non-integrable models where one can only
give asymptotics rather than finite-N formulas.

For example, Ben Arous, Mei, Montanari, and Nica [43] consider a rank-one perturbation of
GOE, using an LDP for the largest eigenvalue of such a matrix established by Maida [118], and
an LDP for the empirical spectral measure of a(n undeformed) GOE matrix due to Ben Arous and
Guionnet [42].

Another example appears in two recent results of Baskerville, Keating, Mezzadri, and Najnudel,
which cover finite-rank perturbations of GOE [29] and a specific ensemble of Gaussian matrices with
a variance profile, inspired by a two-layer spin-glass model of neural networks [30]. In both cases
the determinant analysis is performed through rigorous supersymmetric methods.

How do our methods differ? The model-specific results in our Theorem 1.1.1 are all corollaries
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of a general theorem, which prove that we can obtain (1.1.2) after checking the following three
general conditions which do not use invariance. Stated informally (see Theorems 2.1.1, 2.1.2 for

complete statements):

(i) There is no problem caused by extremely large or small eigenvalues (at scale e*V).

(ii) The empirical measure fif7, concentrates about its mean E[fiz,].

(iii) There exists a sequence (un)—; of regular, deterministic probability measures which is a

mildly good approximation for (E[fig,]){_;-

We offer two interpretations for condition (ii). The first, more standard interpretation says it suffices
for traces of Lipschitz functions of Hy to concentrate (which follows, for example, from log-Sobolev
via [103], or from Gromov-Milman concentration of compact groups). The second, more novel
interpretation holds when Hy is given as a Lipschitz, convex function of some independent random

variables. As a simple example, a Wigner matrix is a linear function of w

independent random
variables — namely the upper-triangular entries, which are then arranged above and below the
diagonal. As a more complicated example, one could start with some independent random variables
and mix them differently in different entries, to make a random matrix with correlations. This case
is designed to apply Talagrand’s classical concentration-of-measure results, which say that Lipschitz,
convex functions of bounded, independent random variables concentrate. By approximating the
logarithm by some Lipschitz, convex functions, and truncating the input random variables, we can
write the expected determinant almost as a Lipschitz, convex function of bounded, independent
random variables, yielding concentration. Product-measure concentration is of course now very
common in probability, but we remark that it is not so common in this corner of random matrix

theory, and that it is pleasantly surprising that it gives almost-sharp results (for example, for

Wigner matrices with 2 + ¢ finite moments).
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1.6 LARGE DEVIATIONS FOR EXTREME EIGENVALUES

As described above, one of the goals of this thesis is to describe random matrices for which LDPs
are not available. However, some LDPs for non-invariant random matrices have recently been
established, in the following breakthrough results of Guionnet and Husson [99] and Guionnet and

Maida [102]. We state only the real case, but all results are true in the complex case as well.

Theorem 1.6.1. [99] Let i be a centered probability measure on R with unit variance that is sharp

sub-Gaussian, in the sense that

A:=2sup %2 log</ e”%(dx)) =1 (1.6.1)

teR

(The condition A < oo is usually called sub-Gaussian; notice this is asking for more. Examples
of sharp sub-Gaussian measures include the Bernoulli and Uniform distributions, appropriately
scaled.) Let Wi be a Wigner matriz associated with p, meaning that Wy has independent entries
up to symmetry with (Wy)j ~ @u Then the largest eigenvalue of Wiy satisfies an LDP at

speed N with the same rate function as that of the GOFE, namely

400 if x <2,

sV —4dy ifz =2

I(z) =

For the case of non-sharp sub-Gaussian distributions (i.e., A > 1 in (1.6.1)), large-deviations
estimates are given by Augeri, Guionnet, and Husson in [15]. These estimates show that the rate

function is not the same as that of the GOE, since it is asymptotic to ﬁxQ for large x.

Theorem 1.6.2. [102] Let (An)J—; and (BN)S—; be two sequences of deterministic real diagonal
matrices whose empirical spectral measures fia, and fig, tend to compactly supported limiting
measures pa and pp, respectively, as N — oo. Suppose that supy (||An|| + [|Bn||) < oo, and that

the largest eigenvalues have limits Apaz(AN) — t(pa) and Apaz(By) — r(pp), respectively (here
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r(-) is the right edge of a compactly supported probability measure). If Oy is a Haar orthogonal
matriz of size N, then the largest eigenvalue of An + ONBNO]:C, satisfies an LDP at speed N with

the good rate function

+o0 if v <x(pa B pp),
I(z) =

Sup9>0{J(,uA EB KB, 07:1:) - J(/’LA707 r(,u’A)) - '](,U’B7 97r(MB))} me 2 r(,U’A Hﬂ MB)

Here the functions J are explicit functions arising in the analysis of rank-one spherical integrals;

see (5.2.2) for the exact form.

Guionnet and Malda give extensions to the case when Ay and By have outliers below the BBP
threshold (meaning such that A\pax (An + ONBNO%) —r(paBpup)), and for a specific model with
more extreme outliers.

In Chapter 5, we use and extend the techniques of these papers to study large deviations of
additively deformed Wigner matrices of the form Wy + Dy, where Wy is a sharp sub-Gaussian
Wigner matrix and Dy is deterministic, usually with full rank. The results are stronger if Wy is

in fact Gaussian, and even this special case was new:

Theorem 1.6.3. (M. [121]) Let Wy be distributed according to the GOE, and let (Dn)J_, be a
sequence of deterministic real symmetric matrices whose empirical spectral measures tend to some
compactly supported limiting measure pup as N — oo (with a mild speed-of-convergence assumption).
Suppose that the largest and smallest eigenvalues of Dy tend to the right and left endpoints of up,

respectively. Then Amax (Wn + D) satisfies an LDP at speed N with the good rate function

400 if © < x(psc B up),
I(z) =

Sup@}O{J(pSC H HD, a)x) - 92 - J(,uD707 I‘(IMD))} fo 2 r(pSC 2] MD)

Surprisingly, the rate function here is not analytic: It has a second-order phase transition at some

finite x., for reasons that remain mysterious, but are perhaps related to a localization-delocalization
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phase transition.
All of these results are proved by tilting the measure by a Laplace transform, as in the classical
proof of Cramér’s theorem. But the appropriate Laplace transform here is the (rank-one) spherical

integral defined for § > 0 and an N x N matrix A by
In(A4,6) = E,[eNoleAe), (16.2)

where E, integrates over vectors e uniform on the unit sphere S¥=1 c RY. This is a special case
of the famous Harish-Chandra/Itzykson/Zuber (HCIZ) integral, defined for two matrices A and B

by integrating over Haar measure on the orthogonal group Oy as
/eNTr(OAOTB) dHaar(O). (1.6.3)

If we take B = diag(,0,...,0), this reduces to (1.6.2). The large-N asymptotics of (1.6.2) were
established by Guionnet and Maida in 2005 [101], and involve the function J defined above; see
Chapter 5 for complete formulas. We mention that the asymptotics of rank-one spherical integrals
are remarkably concise, given the famous difficulty of describing the asymptotics of the full-rank
HCIZ integral [104, 127].

Future research might be able to combine these LDPs with our techniques for random-matrix
determinants to obtain new results in landscape complexity. Specifically, to study critical points of

index k, a variant of the Kac-Rice formula reduces in all of our cases to

ol
/me NETE(det(Hn () Ligry (u))=1]) du,

where i(-) is the index of a matrix, m is independent of N, and (Hy(u))ucrm is a field of non-
invariant random matrices. We give results in this thesis for the case k = 0 (meaning local minima);
we are about to describe these, after which we will consider possibilities for k£ > 1 (meaning saddle

points). For pure spherical p-spin models, annealed (and quenched!) results for fixed k& have been
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established in [10, 141, 12]; here we have in mind a general model for which annealed estimates are
not yet available.

If the matrix Hy(u) has limiting empirical spectral measure po(u), consider the set
G = {u € R™ : supp(oo(u)) C [0,00)}

of good u values, and restrict momentarily to the case k = 0. If the matrices Hy(u) have asymp-
totically no outliers, which is true for all of our models, then G is the same (up to boundary issues)
as the set of u values for which {i(Hy(u)) = 0} is a likely event. Indeed, in Chapter 2 we show

that
E[|det(Hn(u))]] ifu € g,
Ef|det(Hn (w))|Li(my (u))=0) &
0 ifugg

at exponential scale, and that consequently

2
Il

1 Nl [
M log e Eldet (Hy (u) iy (w)—ol du:zgg{/log\kluoo(uxd)\)—2 :

What happens when k = 17 Suppose one can show, perhaps through tilting by spherical integrals,
that Apin(Hy(u)) satisfies an LDP at speed N with the good rate function I(u,-). Then one

naturally guesses

1 Jlog|Alpoo(u)(dA) — I(u,0) ifu € g,
N log E[|det(Hn (w)) Lz (u))=1] =

—00 otherwise,

and thus one guesses

1 N
lim —log e N5 EHdet(HN(’LL))|]lz~(HN(u)):1]du

N—oo N R™

_ _ _

— sup{ [ 1og Ao (w)(dX) — I(,0) .
u€eg 2
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Then the complexity of index-one saddle points would be described as this variational problem,
plus simpler terms. In fact, if one could prove this, then index-k saddle points for fixed k& would
likely follow in the same way: Recently, Guionnet and Husson proved that rank-k spherical integrals
approximately factor as the product of k rank-one spherical integrals [100]. As they showed, this
implies that, for several random matrix ensembles where the largest eigenvalue was already known
to satisfy an LDP at speed N with some rate function I(x), in fact the kth largest eigenvalue
satisfies an LDP at speed N with the rate function kI(x). (This phenomenon was already known

for the GOE, from [10].) This might allow one to give the complexity of index-k saddle points as

ull2
Sup{/log\)\\/ﬁoo(uxd)\) = kI(u,0) — ”2H}

uegG

plus simpler terms. For example, for the model described in Theorem 1.3.1 above, this would give

the complexity ¥*(u,1) of index-k critical points as

1 min
S (1) = S[=3 + 4p — p? —log(p*)] = X" (. 1),

meaning that index-k critical points have the same total complexity for every fixed & > 0 (notice
this is the same phenomenon as exhibited in pure spherical spin glasses [10]).
Finally, we consider the case k = aN for a € (0,1). Suppose that the empirical spectral measure

Ry (u) satisfies an LDP at speed N? (or even N'*€). If we consider the set
Ga ={u € R™ : tioo(u)((—00,0)) = 1 — p1oo(u)((0, 00)) = a}
(which may well be a singleton set), then one guesses

1 Jlog|A[poo(u)(dA)  if u € Ga,
v Lo8 Ef|det(Hn (w))[Li(ay (u))=an] ~

—00 otherwise,
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and thus one guesses

! _ylul? [l
ngnooﬁlog/me 2 Efldet(Hn (w)|Li(ay (u))=an] du = 5;&{/10g|A|Mm(U)(dA) — [

1.7 OPEN QUESTIONS

We end with a selection of open questions.

Question 1.7.1. FEstablish determinant concentration (1.1.1) when Hy is the adjacency matric
of a random d-regular graph, in any range of parameters d (either fized or tending to infinity).
Via our theorem, it suffices to either (a) prove some version of discrete log-Sobolev for random
reqular graphs, or (b) find an equality in distribution describing the adjacency matriz of a random
d-regular graph as a Lipschitz, convex function of some independent random variables (Bernoullis

seem natural, although any description would suffice).

Question 1.7.2. Describe the quenched picture for any of the models we study, i.e., compute not
lim py oo % log E[Crt] but limpy—e0 %E[log Crt].

Versions of the Kac-Rice formula allow for computation of finite moments E[Crtk], k € N,
in terms determinants of the form E[[T%_, | det(H®)|], where the HD’s may be correlated. Our
determinant asymptotics extend to such products; this is the motivation of Appendix A. If the
second moment matches the first squared, then one can show that the quenched picture is the same
as the annealed one (this is the approach, and the result, of Subag [141] and Auffinger-Gold [12]
for pure p-spins). But if the second moment does not match the first squared, the situation seems
largely intractable: It is not even clear that the distribution is determined by its moments. In the
physics literature, Ros, Ben Arous, Biroli, and Cammarota [136] have proposed a method they call
replicated Kac-Rice, which claims to compute the quenched asymptotics even when they do not

match the annealed. Can one make this method mathematically rigorous?

Question 1.7.3. We have suggested that zero/positive complezity is a good predictor for the
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success/failure, respectively, of local optimization algorithms like Langevin dynamics. Can one

study Langevin dynamics directly and prove this? See the work of Ben Arous-Gheissari-Jagannath

[40, 39, 41].

Question 1.7.4. The Kac-Rice formula is technically not restricted to Gaussian processes, but
the versions for non-Gaussian processes require many conditions. More importantly, the process
of conditioning the Hessian on criticality, which is of course routine in the Gaussian case, looks
prohibitively difficult for non-Gaussian processes. Can one establish an easy-to-use non-Gaussian

Kac-Rice?

Question 1.7.5. Can one study complezity of serious machine-learning models (which are often

non-Gaussian), and relate the complexity to the performance of these models?

Question 1.7.6. A technical random-matriz question: To apply our theorem on determinant con-

centration to a particular random matrix Hy, we need, as input, an estimate like

P(Hy has no eigenvalues in [E —e N | E+e N])=1—o0(1) (1.7.1)

for fixed E € R. Results of this type should be true under almost no assumptions on Hy (in fact,
there should usually be a gap around E of size o(N~—1) with high probability, and (1.7.1) is asking
for much less). But it is not clear what such a minimal proof would be; if this result were known,
we could remove many of the reqularity assumptions in our results.

Can one find techniques to prove (1.7.1) with minimal assumptions? To give a concrete example,
does it hold if Hy is a sample covariance matriz with 2+ ¢ finite moments and E is in the bulk of

the Marcenko-Pastur law?

Question 1.7.7. For the elastic manifold, we studied the mean-field scaling where L and d are
fized and N tends to infinity. What can be said for non-mean-field scalings where L and d tend to
infinity with N 2 (Or other scalings — for ezample, Fyodorov, Le Doussal, Rosso, and Texier studied

the scalingd =1, N =1, and L — 400 [90].) When does the Larkin phase transition persist?
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Question 1.7.8. For the soft-spins model %(u, Dnu)+Vy(u), we find the phase transition between
positive and zero complexity, and establish the critical exponents governing this phase transition.
Can one find more fine-grained information? For example, in the physics literature, Fyodorov
and Nadal [91] studied the special case Dy = pld using left- and right-tail asymptotics of the
Tracy-Widom function, and argued that (i) for every supercritical p (not “large enough”), the
expected number of local minima in the large-IN limit is not just subexponential but actually almost
one; (i) the non-trivial phase transition occurs at the scale | — pe| =~ N~Y3; and (iii) when
(ﬁ — I)Nl/3 =0 > 0, the expected number of local minima as a function of §, in the large-N
limit, approaches some limit shape that can be written using (but is not exactly) the Tracy- Widom
distribution.

What happens in the anisotropic case? In particular (i) does there exist an environment Dy
such that, in the trivial phase, the expected number of local minima is subexponential but does

actually grow with N; and (ii) what happens when the environment Dy has outliers beyond the

BBP phase transition (meaning fluctuations that are not Tracy-Widom)?

Question 1.7.9. For bipartite spherical spin glasses, the complexity results we can establish are
essentially all of the form “phenomena already present in usual (single-species) spin glasses, due
to [10], also occur for the bipartite case.” Are there other complexity questions for which new
phenomena appear in the bipartite case?

Related: Consider the case of p-partite spherical spin glasses (where spins interact in p groups,
instead of the p = 2 model studied in this thesis). This is defined on the product of p spheres of
dimension order N. Likely our arguments extend to any fized p. What happens in the non-mean-

field scaling p = py — +00?

Question 1.7.10. Another question in large deviations: The rank-one spherical integral (1.6.2),
which has asymptotics at scale N per [101], can establish LDPs for extreme eigenvalues at speed N.
Can the full-rank HCIZ integral (1.6.3), which has asymptotics at scale eN? per [104], be useful for
establishing LDPs for empirical spectral measures at speed N?? Belinschi, Guionnet, and Huang

made recent notable progress in this direction, for some matriz models arising in free probability
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[32]. It might also be helpful to interpret the HCIZ integral differently; for example see Novak’s
recent proof [127] of a longstanding physics conjecture on the relationship between the HCIZ integral,
combinatorics, and representation theory.

For concreteness, take the case of symmetric Bernoulli matrices By. Here is a tricky observa-
tion due to Guionnet. Although the largest eigenvalue of By satisfies an LDP with the same rate
function as GOE (as a special case of [99]), the empirical spectral measure of By cannot satisfy

an LDP at speed N? with the same rate function as GOE: The rate function for GOE vanishes at

N(N+1) 2log2
2 -N 2

~e . So we do not

—~
D=
~—

do, but the rate function for By cannot, since P(By = 0) =

even have a guess for the rate function.

Question 1.7.11. The least well-formed question: What would a discrete complezity theory look
like? For example, consider the Sherrington-Kirkpatrick Hamiltonian Hy : {—1,+1}Y — R. There
is a natural definition of “local minimum” — namely, “switching each coordinate does not decrease
the Hamiltonian” — but it is not clear how to define an indezx-one saddle point, for example. Worse,
there is no Kac-Rice formula, since there are no classical derivatives. But one can still study
dynamics on the Sherrington-Kirkpatrick model; is there some scalar observable of the geometry

that should predict when these dynamics succeed or fail?

RoADMAP

The organization of the disseration is as follows. In Chapter 2, based on [35], we study the deter-
minants of non-invariant random matrices and prove Theorem 1.1.1. In Chapter 3, based on [36],
we study the complexity of the elastic manifold and of soft spins in an anisotropic well, proving
Theorems 1.4.1 and 1.4.2. In Chapter 4, based on [120], we study the complexity of bipartite spin
glasses and prove Theorem 1.4.3. Finally, in Chapter 5, based on [121], we study large deviations

and prove Theorem 1.6.3.
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Chapter 2

Exponential growth of random

determinants beyond invariance

This chapter is essentially borrowed from [35], joint with Gérard Ben Arous

and Paul Bourgade, which will appear on the arXiv soon.

2.1 INTRODUCTION

2.1.1 Overview. In this paper, our goal is to study the expected absolute values of the deter-
minants of general N x N real symmetric random matrices Hy, specifically at exponential scale in
the large-N limit:
1
lim — logE Hy)ll. 2.1.1
Jim - log Ef|det(Hy)|] (2.1.1)

We identify two sets of simple criteria that lead to asymptotics of this type (Theorems 2.1.1 and
2.1.2), and apply them to a wide variety of matrix models.

Initiated in the 1930s, and developed early on by Turan, Fortet, Tukey, Nyquist, Rice, Riordan,
Prékopa, and others, the study of random determinants has focused on three distinct questions:

the singularity probability (that the determinant of a discrete random matrix vanishes), Gaussian
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fluctuations, and asymptotics of the type (2.1.1). We will describe this history below in greater
detail. The third direction is useful for the topological “landscape complexity” program, which
studies the geometry of high-dimensional random functions via the Kac-Rice formula, and which
motivates our present work.

Most studies in this direction have focused on the invariant Gaussian ensembles. We study ran-
dom determinants in contexts where the distribution of the matrix Hy is not necessarily invariant
by orthogonal conjugacy, evaluating (2.1.1) for matrix models including Gaussian matrices with
variance profiles, large zero blocks, or even correlations; Wigner matrices and sample covariance
matrices with near-optimal 2 + ¢ finite moments; Erdds-Rényi graphs with parameter p > N¢/N;
band matrices with any bandwidth W > N¢; and the classical free-convolution model A + OBOT
with O uniform on the orthogonal group. For example, denoting ps. the semicircle density on

[—2,2], for any E we prove that
1
lim — logE[|det(Wy — E)[] = /log])\ — Elpse(A) d),
N—oo N

whenever Wy is a Wigner matrix (Corollary 2.1.3) or a random band matrix (Corollary 2.1.6),
under the above moments and bandwidth assumptions.

In the companion papers [36, 120], we use these results to study the landscape complexity of
non-invariant random functions. There, we prove formulas of Fyodorov and Le Doussal [88] on the
classical “elastic manifold” from statistical physics, which models a point configuration with local
self-interactions in a disordered environment. We also find a new phase transition, with universal
near-critical behavior, for a certain anisotropic signal-plus-noise model.

In fact, for these geometric applications we need to understand asymptotics like (2.1.1) when
the matrix Hy has long-range correlations, for example when all the diagonal entries are correlated
with each other. In the last section of this paper, we show how to give exact variational formulas for
asymptotics of this type, based on the (simpler) formulas for matrices with short-range correlations.

Theorem 2.1.1 and 2.1.2 below prove that we can obtain the asymptotics (2.1.1) under three
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general conditions which do not use invariance, stated informally as follows.

(1) We can discard the contribution of extremely large and small eigenvalues (at scales e’" and

eV,

(2) Some form of concentration of the empirical spectral measure fifr, about its mean E[fif,]

holds.

(3) There exists a deterministic sequence (un)_; of probability measures, sufficiently regular,

that are mildly good approximations for the mean spectral measure E[fif, ].

Overall, our proof strategy is to write the determinant as an almost-continuous test function in-
tegrated against fifr, , regularize the logarithm using (1), prove concentration of this test statistic
about its mean using (2), and relate this mean to something more recognizable using (3). Checking
condition (1) is typically model-specific, but conditions (2) and (3) can be discussed in general.
To prove condition (2) on concentration of fifr, , we identify two distinct criteria, corresponding

to our general theorems:

— Either (the convexity-preserving functional case, Theorem 2.1.1) Hy is built in a convexity-

preserving and Lipschitz way from arbitrary independent random variables,

— or (the concentrated input case, Theorem 2.1.2) linear statistics of Hy are already known to
concentrate. This is meant to be applied if, e.g., Hx satisfies log-Sobolev, or Gromov-Milman

concentration on compact groups.

To prove condition (3) regarding convergence of E[fiz, |, in the case of classical random matrices
the approximating sequence (un)7_; is well-known (and in fact constant): For example, one should
choose the semicircle law for Wigner matrices, or the Marcenko-Pastur law for sample covariance
models. But the good choice of uy for non-invariant Gaussian ensembles, which are the most
important matrices for applications to complexity, has only been understood recently, a consequence

of the theory of the Matrix Dyson Equation (MDE) as developed in [5, 6]. Given nice Hy, the
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MDE produces a probability measure uy found by solving a constrained problem over matrices.
The existence, uniqueness, and regularity theory of the MDE is an important input for our work.

The organization of the paper is as follows: In the rest of this section, we give some history
on determinants of random matrices, then state our main results. We prove our general results,
Theorems 2.1.1 and 2.1.2, in Section 2.2, then prove our applications to matrix models in Section
2.3. In Section 2.4, we discuss determinants in the presence of long-range correlations. Finally, in

Appendix A we extend our results to product of determinants, showing

e .
>>|] = (i log B[ det(2)) ) (21.2)

.1 £ (i
]\}1_{1100 N logE L:r[l | det(H p
for any fixed ¢ and random matrices H](\}), ey H](\f) which may be correlated with each other. This

asymptotic factoring holds regardless of the correlation structure between the H](\?’s.

2.1.2 History. The earliest research on random-matrix determinants covered non-Hermitian
matrices with i.i.d. entries, discussing an extremal problem on the determinant of Bernoulli matrices
[142] (extended in [151]) and exact formulas at finite N for small moments of determinants [82,
81, 128, 132] (see also Girko’s book [97]). Later in the literature, we identify three main strands of
research on determinants.

First, one can ask for the probability that an N x N discrete matrix (Bernoulli, say) is singular,
i.e., that its determinant is zero, for large N. In the non-Hermitian case, Komlés showed that this
probability is o(1) [110, 111]. Recently K. Tikhomirov established the long-standing conjecture
that this probability is (3 + o(1))" [149]; earlier exponential estimates in this direction include
[108, 144, 145, 61].

Second, one can show that the determinant, appropriately normalized, has Gaussian fluctua-
tions. In the non-Hermitian case, if the entries are Gaussian this follows from work of Goodman
[98]. Gaussianity was replaced by an exponential-tails assumption in [126] and a fourth-moment

assumption in [23]. In the Hermitian case, Gaussian matrices were studied in [67]. Gaussianity was
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relaxed to a four-moment-matching assumption in [146], then to a two-moment-matching assump-
tion in [59, 60]. Some other ensembles were treated in [63, 138], and more about determinants for
Gaussian ensembles was discussed in [56, 72].

Third, one can study the same question we do here, namely the asymptotics of E[|det(Hy)|],
usually in the same context of studying complexity for high-dimensional random fields. Here we
just discuss the types of random matrices that have appeared; for a discussion of what these
prior results mean for complexity, we refer to the companion paper [36]. Fyodorov [84] studied
Gaussian matrices of type GOE + N (0,1/N)Id using supersymmetry, and a similar model was
addressed in Auffinger et al. [10] using known large-deviations principles (LDPs) [42, 37]. Rank-
one perturbations of GOE appeared in [43], using an LDP of Maida [118]. An upper bound for
full-rank perturbations of GOE appeared in [78], based on free probability and large deviations.
Upper and lower bounds for Gaussian matrices with a certain covariance structure were given in
[11]. The (Gaussian) real elliptic ensemble was discussed in [38], based on a new result on large
deviations for its spectral measure. Baskerville et al. cover finite-rank perturbations of GOE in [29]
and a specific ensemble of Gaussian matrices with a variance profile, inspired by a two-layer spin-
glass model, in [30]. In both cases the determinant analysis is performed through supersymmetry,
for the asymptotic spectral density and for Wegner estimates. Our corollaries 2.1.8.A, 2.1.8.B, and
2.1.9 about general Gaussian ensembles provide alternative derivations for all these results about
Hermitian matrices. These corollaries also make rigorous the analysis of random determinants by
Fyodorov and Le Doussal [88] (see [36] for corresponding complexity results).

Finally, asymptotics for a pair of determinants, in the style of (2.1.2) with ¢ = 2, appeared for
a particular pair of random matrices from spin glasses, closely related to correlated GOE matrices,

in [141, 12, 44]. These arguments were based on known LDPs for Gaussian ensembles.

Notations. We write || - || for the operator norm on elements of C¥V*¥ induced by the L? distance

|/ (=)= f(y)

on CN. We let || f||Lip = SUD,y "oy Q‘LQ for functions f : R™ — R", and consider the following
L

three distances on probability measures on the real line (called bounded-Lipschitz, Wasserstein-1,
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and Kolmogorov-Smirnov, respectively):

() =sup{ | [ Fa(n )
Wil,) = supd | [ - v)

N fllip + 1]l < 1},

i < 1},

dics (11, ) = sup{ (=00, 2]) — v((—o0,a])| : € R}.

We normalize the semicircle law as pg.(dx) = ¥ 42;””2 1,¢[—2,2) dz. We write 1(u) for the left edge

(respectively, r(u) for the right edge) of a compactly supported measure p. For an N x N Hermitian
matrix M, we write Apin (M) = M (M) < -+ < ANv(M) = Apax (M) for its eigenvalues and
iy = % Zi]\il Ox,(ar) for its empirical measure. We write %y for the set of all N x N realy
symmetric matrices, and B for the free (additive) convolution of probability measures.

We write Bp for the ball of radius R around 0 in the relevant Euclidean space. We use ()7 for
the matrix transpose, which is distinguished both from the matrix conjugate transpose (-)*, and

from the matrix trace Tr(-).

2.1.83 General theorem for convexity-preserving functional. The following Theorem 2.1.1
is our first general result, it applies to random matrices without any a priori concentration hypoth-
esis, but requires the tools of convex analysis, in particular results of Talagrand.

To state the hypotheses, we denote x > 0 an arbitrarily small control parameter which does not
depend on N. Let M = My > 1. Consider X = (Xy,...,Xs) a random vector. We now consider

the following set of assumptions.

(I) The X;’s are independent and real-valued.

(M) Matrix model. Let H = Hy = ®(X) where ® : RM — .7y is deterministic and Lipschitz and

®~1(A) is convex for any convex set A.

(E) Expectation. A sequence of probability measures uy exists satisfying the following properties.
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First,

dpL(Efig(x), pv) < N 7" (2.1.3)

Moreover, the py’s are supported in a common compact set, and each has a density py(+) in
the same neighborhood (—#, k) around 0, which satisfies uy(z) < £~ z|71** for all |z| < &

and all N.

(C) Coarse bounds. Write (\;)X; for the eigenvalues of ®(X). For every ¢ > 0,

N

) 1
Jim < logE i:r[l(1+\Ai\]1M>eNa) =0, (2.1.4)
lim P(®(X) has no eigenvalues in [—e V", e™V]) = 1. (2.1.5)

N—oo

In addition, there exists 6 > 0 such that

log E[|det(Hy)|* ] < oo. (2.1.6)

1
y
Nowt Nlog N

(S) Spectral Stability. Let (Xcut)i = Xi]l‘XiKN_”/H‘I’HLip' We have

. 1 . . _
im Nlog N logP<dKS(M¢>(X)7MCI>(Xcut)) >N H) = —00. (2.1.7)

Theorem 2.1.1. (Convexity-preserving functional) Under the assumptions (1), (M), (E),
(C), (S), we have

lim (;flogEHdet(HN)H —/Rlog])\]uN(d)\)> =0. (2.1.8)

N—o0

Comments on the result. (i) A polynomial rate in (2.1.4) is enough to give a polynomial rate of

convergence

1
- g Eldet(Hy)] [ loglAluy ()| < N°*
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for some € > 0 and N > Ny(¢). Indeed, an examination of the proof shows that £ depends only on
k and the polynomial rate in (2.1.4), but Ny(e) also depends on the rates of convergence in (2.1.5)
and (2.1.7), and on the permissible values of § and the value of the limsup in (2.1.6).

(ii) The matrix Hy does not need to be centered. As an elementary example, we can choose
Hy = Wy — E for Wy a Wigner matrix and obtain concentration around [ log|A — E|psc(X) dA;
see Corollary 2.1.3 below.

(iii) The proof uses Talagrand’s concentration inequality for product measures. We want to
recognize the determinant almost as a Lipschitz, convex function of independent, bounded ran-
dom variables. Ideally these would be the X;’s, but they are not bounded; however, we truncate
them using assumption (S). The functional H = ®(X) gives the Lipschitz, convex condition, after

regularizing the logarithm using assumption (C).

Comments on the assumptions. We discuss briefly why our assumptions are reasonable and close
to optimal. In our applications, ® is linear so Assumption (M) is trivially satisfied, but @ is also
allowed to create correlations between the entries in a nonlinear fashion. Equation (2.1.5) avoids
a non-trivial kernel, an obviously necessary condition for (2.1.8). Equation (2.1.6) asks for slightly
more integrability than finiteness of lim sup N ! log E[| det H/|] which is implied by the result and
assumption (E). In Section 2.3.10 we show the importance (2.1.4) (which is a constraint on large
eigenvalues) and Assumption (S) (which essentially states that the spectrum should not depend
too much on a small number of X;’s): for each of these, we give an example of a distribution on
matrices satisfying every other assumption but not this one, for which the result of the theorem

fails.

2.1.4 General theorem for concentrated input. Here we consider the problem of exponential
growth for random matrices Hpy that already satisfy some concentration property directly, without
having to cut the tails and apply a result of Talagrand as in (the proof of) Theorem 2.1.1. For
example, in applications we will take matrices whose upper triangles satisfy a log-Sobolev inequal-

ity (even if correlated), or Gromov-Milman-type concentration. We remark that the dichotomy
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in Theorems 2.1.1 and 2.1.2 — namely, proving the similar results, once under product-measure
assumptions and once under log-Sobolev-style assumptions — first appeared in the classic concen-
tration paper of Guionnet-Zeitouni [103]. We have termed these models “concentrated input,” to
contrast with the previous section’s “convexity-preserving functional” where Hy is written as ®(X)
and concentration is provided by convexity-preserving properties of ® (and tail bounds). In this
section, we will therefore consider Hy directly. We will also replace some of the assumptions above

with the following.

(W) Wasserstein-1. A sequence of probability measures py exists satisfying the following proper-
ties. First,

Wl(EﬂHNaﬂN) <NTF (2.1.9)

Moreover, the py’s are supported in a common compact set, and each has a density py(-) in
the same neighborhood (—#, k) around 0, which satisfies py(z) < ! z| 71" for all |z| < &

and all N.

(L) Concentration for Lipschitz traces. There exists g > 0 with the following property: For every

¢ > 0, there exists ¢ > 0 such that, whenever f : R — R is Lipschitz, we have for every 6 > 0

# ([ mostmn - g >o) <o (5w (70) - () )
(2.1.10)

On a first pass readers can drop the N~¢ factor in (2.1.10). It is included because, for Gaussian
matrices as in Section 2.1.9, our assumption on the correlation structure implies (2.1.10) for every

¢ > 0 but not necessarily for ¢ = 0.

Theorem 2.1.2. (Concentrated input) Under the assumptions (W), (L), and the gap assump-

tion (2.1.5), we have

1
lim <logE[|det(HN)|] —/log|)\|,uN(d)\)) 0.
N—oco\ N R
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As in Theorem 2.1.1, by examining the proof one can find a small polynomial rate N~¢ in
Theorem 2.1.2.

Compared to [103], we do not require bounded entries in Theorem 2.1.1, our matrix models
are more general, and we consider logarithmic singularities. On the other hand, [103] identifies the
correct scale of fluctuations, analogous to a rate of convergence of order N~! in (2.1.8), for test

functions without singularities.

2.1.5 Wigner matrices. We now discuss determinant asymptotics for Wigner matrices Wy
with 2 + ¢ finite moments. This is almost optimal, up to the ¢, in the sense that E(|W12|?) = +o0
implies E[| det(Wx)|] = +00 (we give a short proof of this fact in Section 2.3.3 below). It would be
interesting to study the case of Wigner matrices with exactly two finite moments, or the intermediate
regime of an N x N matrix with 2 + ey finite moments as ey — 0.

Fix some € > 0, and let 1 be a centered probability measure on R with 2+ ¢ finite moments and
unit variance. Let Wy be a real symmetric N x N Wigner matrix associated with wu, by which we
mean that the entries of v NWy are independent up to symmetry and each distributed according

to p. The following corollary uses Theorem 2.1.1.

Corollary 2.1.3. (Wigner matrices with 2 + ¢ moments) For every E € R we have
1
lim — logE[|det(Wy — E)|] = / log|A — E|psc(N) dA.
N—oo N R

An examination of the proof shows local uniformity in E, meaning that for every compact

K C R we have

1
lim sup ( log E[|det(Wy — E)[] — / log|\ — E|pee(\) d)\) ~0.
N—oo pek N R

Remark 2.1.4. One would also be interested in results of the form

1
lim - log ElJdet(Wy + Dy)l) = [ 10g]|(puc B 10) (0N, (2.1.11)

N—o0
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where (DN)_, 5 a sequence of deterministic matrices whose empirical measures tend to some
compactly-supported pup (at some polynomial speed and without outliers, say). Our techniques could
likely be extended to prove such a result under the assumption of 2 + € moments on the Wigner
matrices. We do not pursue this direction further here; however, in the companion paper [36], we
prove (2.1.11) with a different approach when Wy is a GOE matriz. For a related problem, see the

free-addition model below, in Corollary 2.1.10.

2.1.6 FErdds-Rényi matrices. We now consider Erdés-Rényi matrices with near-optimal spar-
sity parameter p > N¢/N, i.e., when each vertex has expected degree N¢. It is classical that the
limiting spectral distribution of such matrices is semicircular as long as p = w(1/N) (see, e.g.,
[150]), but not semicircular anymore if p = a/N for « fixed (see, e.g., [31]).

Fix some € > 0, and let Hy be an N x N Erdos-Rényi random matrix with parameter 1 —e >
PN 2 % scaled so that the bulk eigenvalues are order one. This means that the entries are

independent up to symmetry and

1 1  with probability py,

VNpNn(1—pN)

(Hn)ij =
0 with probability 1 — py.

The following corollary uses Theorem 2.1.1.

Corollary 2.1.5. (Erdds-Rényi matrices with p > N°/N) For any E € R with |E| # 2 we
have

1
hn1—AlogEHdedfﬁv—-Eﬂ]:l/logA——E“kAA)dx
N—oco N R

This result is locally uniform for £ away from the edges, meaning F in any compact subset of

R\ {-2,2}.

2.1.7 Band matrices. In this section we consider random band matrices Hp, i.e., matrices

whose (i, 7)th entry is zero unless i and j are less than some W apart. Many statistics of Hy are
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believed to undergo a phase transition at W ~ N1/2. For example, the eigenvectors are supposed
to be localized on o(N) sites for W < N/? and delocalized for W > N'/2. However, we establish
that the determinant asymptotics do not see this phase transition: They are the same as long as
W — +o0 polynomially in N. For a full discussion, we direct the reader to [57].

Let p be a centered probability measure with unit variance that has subexponential tails, in

the sense that there exist constants a, 8 > 0 such that, if X ~ u, then

P(|X|>t%) < Be”

for all £ > 0. Suppose also that p has a bounded density u(-). Fix any ¢ > 0. Let Hy be an
N x N band matrix with bandwidth W = Wy > N¢ corresponding to p. This means that Hy has

independent entries up to symmetry with

=0 if i = jll > W,
(HN)ij
X [T .
T i<W
(Here we take periodic distance ||i — j|| = min(|i — j|,N — |i — j|).) The following corollary uses

Theorem 2.1.1.
Corollary 2.1.6. (One-dimensional band matrices with bandwidth W > N¢) Under the
above assumptions,

1
lim_ - log Elldet(Hy — B)[] = / log| A — E|pse()) dX.
R

N—oo

This result is locally uniform in F.

We now comment on the significance of this result. In the companion paper [36], we solve a
problem of Fyodorov-Le Doussal [88] on a model called the “elastic manifold.” They consider a
mean-field version of this model, corresponding to block-banded random matrices with bandwidth

order N, and find the “Larkin mass” separating ordered and disordered phases. An important open
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problem is the behavior of the elastic manifold beyond mean field, when the corresponding random
matrix is block-banded with sublinear bandwidth. It does not seem to be clear in which regimes
this Larkin transition should persist, but Corollary 2.1.6 may suggest that the transition remains
for any polynomial bandwidth.

Comment on the assumptions. We require subexponential tails in order to use the bulk local
law of Erdés et al. [77] and the extreme-eigenvalue estimates of Benaych-Georges/Péché [46]. The
bounded density lets us prove the Wegner estimate (2.1.5) to control eigenvalues close to 0, with

the Schur complement formula. We believe that the conclusion holds under weaker assumptions.

2.1.8 Sample covariance matrices. Let p be a centered probability measure on R with unit
variance, finite moment of order 2 + ¢ for some € > 0. We assume p has density f = e™9 with f

smooth enough in the sense that, for any a > 1, there exists C; > 0 such that for any s € R

Ca

()| + 1 fg"(s)] < F (2.1.12)

Let Y, v be a p x N = py X N matrix whose entries are independent copies of pi. Suppose that

v = lim PN ¢ (0,1].
N—o0

If v < 1, we require a mild speed-of-convergence assumption

PN _

‘,y_ PNl <N (2.1.13)
for some € > 0; if v = 1, then for technical reasons we require py = N, i.e., we require the matrices
to be exactly square rather than asymptotically square. Write pp, for the Marcenko-Pastur

distribution

Vb, = 2)(z - ay)
2myx

pinp  (dz) = g, b, da (2.1.14)

where a, = (1 — /)%, by = (1 + /7).
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Proposition 2.1.7. (Sample covariance matrices with 2 + ¢ moments) Under the above

assumptions, for every E € R, we have

1
lim — logE[
N—oo DN

1
det(Nyp,N(mN)T - E) H = [ toglA — Blyae ()

We call this a “proposition” instead of a “corollary” because it is not a direct consequence of
our theorems, but rather can be proved in a similar way. We give details in Section 2.3.6. The
proof also shows, as usual, that the limit holds locally uniformly in FE.

Proposition 2.1.7 complements a 1989 result of Dembo [68], who gave an exact formula at finite
N for the averaged determinant in the special case £ = 0, without requiring the assumption of a

bounded density. In our normalization, he showed by a combinatorial method that

&

and one can check from the known log-potential of the Marcenko-Pastur law that

po 1 < N >
Nose N B\ Np(N — p)!

det (;YnN(Yb,N)T)H = E[th(Jpr,N(YZD,N)T>} = ]\TP(]]\TW—p)!’

is the same as given by our proposition.

2.1.9 Gaussian matrices with a (co)variance profile. Let Hy be an N x N real symmetric
Gaussian matrix, possibly with a mean, a variance profile, and/or correlated entries, satisfying the
technical assumptions below. These are essentially the assumptions needed for the local law of
Erdds et al. [75] which we will use in the proof. We first give an easier statement for matrices
with independent entries up to symmetry (Corollary 2.1.8.A), then a more involved statement for
matrices with correlations (Corollary 2.1.8.B). In the statement, we decompose Hy = Axy + Wy
where Ay = E[Hy]. These corollaries use Theorem 2.1.2.

In the following mean-field conditions, the arbitrary parameter p > 0 is fixed.
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(B) Bounded mean. We have supy || An|| < oo.

(F) Flatness. For each N,

lTr(T)
p N

Tr(T
T € CN*N_ T positive semi-definite = ( )

< EWNTWN] <D

Let uny be the measure from the size-N Matrix Dyson Equation, that is, the measure with

density gy (-) whose Stieltjes transform at z € H is & Tr(Mn(2)), where My(2) is the (unique,

deterministic) solution to the following constrained equation over CV*/:

ldyxn +H(zIdyxy —Any + E[WNMy(2)WN])My(2) =0
_ Mny(2) — My(2)"
- 2i

subject to  Im My(z) > (0 in the sense of quadratic forms.

Corollary 2.1.8.A. (Gaussian matrices with a variance profile) If Hy has independent

entries up to symmetry, then under assumptions (B) and (F) we have

1
lim <logIE[|det(HN)|] —/10g|)\|,uN(>\) d>\) — 0.
N—oo\ N R

The following assumptions are needed if Hy has correlations among its entries beyond the symmetry

constraints.

(wF) Weak fullness. Whenever T' € RV*¥ is real symmetric,
E[(Tr(BW))?| > N~'"7 Ta(B?),

(The p = 0 case is called “fullness” in [5].)

(D) Decay of correlations. Write  for multivariate cumulants (for any number of arguments), and
consider the distance on subsets of [1, N]? given by d(A4, B) = min{min{|a — 3], |a — |} :

a € A, € B} where (-)' switches the elements of an ordered pair. For the order-two
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cumulants we assume

C

|I€(f1(WN)a fQ(WN))| < 14+ d(supp fhsupp f2)

szl fall2

for some s > 12 and all L? functions fi, fo on N x N matrices. For order-k cumulants,
k > 3, we consider, for any L? functions fi, ..., fx, the complete graph on {1, ..., k} with the
edge-weights d({i,j}) = d(supp fi,supp f;). Writing Tiyin for the minimal spanning tree on
this graph (i.e., smallest sum of edge weights) and lifting covariance to edges as x({i,j}) =

k(fi, [j), we assume

K(ALWN), - W) < Cr T Is(e)l-

eeE(Tmin)

(In fact, our results hold under some weaker correlation-decay conditions that are longer to

state; see [75, Example 2.12].)

Corollary 2.1.8.B. (Gaussian matrices with a (co)variance profile) Under assumptions

(B), (F), (wF), and (D), we have

1
lim (logEHdet(HN)H —/log|>\|,uN(/\) d/\) — 0.
N—ooco\ N R

Corollary 2.1.8.A is an immediate consequence of Corollary 2.1.8.B, because it is easy to check
that (F) implies both (wF) and (D) if Hy has independent entries up to symmetry. In Section
2.3.7 we therefore only prove Corollary 2.1.8.B.

In some cases one can show that the sequence (un)_; has a limit p, and obtain
, 1
lim — log E[|det(Hy)|] = / log| Al oo (AN).
N—oo N

Notice this does not follow from our assumptions, because we do not assume any consistency in

N. For example, this corollary applies to the contrived example Hy = GOE + (—1)N Id. In the
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companion paper [36], we show how to use the (well-established) stability theory of the Matrix

Dyson Equation to find a limit p., when it exists.

2.1.10 Block-diagonal Gaussian matrices. In this section, we are interested in Gaussian
random matrices with large zero blocks. These are not covered by Corollary 2.1.8.B, since the
“flatness” assumption there implies that all entries have variance in some [£, %] In the landscape
complexity program, such block-diagonal matrices describe random functions whose components
in certain directions are independent of those in other directions. In the companion paper [36], we
study one such random function from statistical physics, called the “elastic manifold.”

Consider matrices Hy = Ay + Wy, with Ay = E[Hy], that have the following special form.
Fix once and for all some K € N (the number of blocks), and consider matrices in RE*K @ RV*N
i.e., matrices with K2 blocks each of size N x N. Write E;; for the matrix with a one in the (i,4)th

entry and zeros otherwise; depending on the context this will be either an N x N matrix or a K x K

matrix.

(MS) Bounded mean structure. Consider a deterministic triangular array (a;)¥; = (a; )Y, with

each a; € RE*K and define
N

AN = Zai ® E”
=1

In particular Ax can only have nonzero entries on the diagonals of each block. Assume

sup || An|| < 0.
N

(MF) Mean-field randomness in diagonal blocks. The Gaussian random matrix Wy has the form

X1 0 0
K 0 X5 0
Wy=> E;®X;= ;
i=1
0 O XK
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where the X;’s are independent N x N Gaussian random matrices, each of which has centered

independent entries up to symmetry. Write :ngk) for the (j,k)th entry of X; and sglk) for its

variance. For some parameter p, each i € [1, K], and each j,k € [1, N], we have

Notice the lower bound is only along the diagonal.

(R) Regularity of MDE solution. Given r = (rq,...,ry) € (CEXFE)N define

N K
i) =3 s B Eyy € CRXK (2.1.15)
k=1j=1

for each i € [1,N]. The MDE in this context is a system of N coupled equations over

K x K matrices; we seek the unique solution m(z) = m™(2) = (my(2),...,mn(2)) =
(MM (2),...,m{Y(2)) € (CEF)N 4o

ldrgx ik +(zIdrxx —a; + Z[m(z)])m;(z) =0
(2.1.16)

subject to Imm;(z) >0 as a quadratic form.

Consider the probability measure puy on R whose Stieltjes transform is given at the point z
1 N

by g >je1 Trm;(2).

Assume that each puy admits a density with respect to Lebesgue measure, and that these

densities are bounded in L, uniformly over N.
The following corollary uses Theorem 2.1.2.

Corollary 2.1.9. (Block-diagonal Gaussian matrices) Under assumptions (MS), (MF), and
(R), we have

lim (jlelogIEHdet(HN)H —/RlogMWN(A) dA) 0.

N—oo

(The normalization is = because Hy is an NK x NK matriz.)
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In applications to landscape complexity, the description of these measures py via the MDE is
very important to prove properties of the limit measures p,. For example, in our companion paper

[36], we use this MDE description to identify a crucial convexity property in a variational problem.

2.1.11 Free addition. Let (AN)JF_;, (BN)¥~; be a sequence of deterministic, N x N, real
diagonal matrices, whose empirical measures tend to some w4, g respectively. We will be interested
in the random matrix Ay +OnB NO%, where Oy is sampled from Haar measure on the orthogonal
group Opy.

We require the following assumptions.

— The measures p4 and pup admit densities p4 and pp, respectively. These densities have single
nonempty interval supports [E4, E4] and [EZ, EB], and each density is strictly positive on

the interior of its support.

— Each measure 4 and pp has a power-law behavior with exponent in (—1,1) at each of its
edges; that is, there exist 6 > 0 and exponents —1 < t4 8 ,tﬁ,tf < 1 such that, for some

C > 1,

-l _PA@) o fralae [E4, EA + 6],

S
/

3
>
&
B

/N

Q

for all z € [EB, EP + 4],

Cclg pAi(:U) forall z € [E_’,L_l -0, Ef],

S
N
Q

for all x € [EF — 0, EP].

&
N
Q

— One of the measures p4 and pp has a bounded Stieltjes transform.

— The eigenvalues (a;)Y., = (aZ(N) )N, of Ay, ordered increasingly, are close to the classical
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particle locations a; defined by

a; = inf{s : /Soo ua(dy) = Z/N}

in the sense that for any ¢ > 0, sup;;<nlai — af| < N7'*¢ for N sufficiently large. The

analogous condition also holds for the eigenvalues of By.

For example, all of these assumptions are satisfied if pu4 is the semicircle law and pp is either a
uniform measure, the Marcenko-Pastur law, or the semicircle law; and if Ay and By store the
relevant %—quantiles.

The following corollary uses Theorem 2.1.2.
Corollary 2.1.10. (Free addition) If Oy is chosen randomly from the Haar measure on the
orthogonal group O, then whenever E is not an edge of us B pup, we have

1
lim log E[|det(Ax + OnByOk — E)|] = /Rlog])\ — E|(pa B up)(\) dA.

N—o0

This result is locally uniform in E away from the edge, meaning uniform in any compact subset of

R\ {1(pa B up),r(na B up)}.

Comment on the assumptions. For the proof, we check the assumptions of the concentrated-
input Theorem 2.1.2 using the local law of Bao-Erdds-Schnelli [22] and the fixed-energy universality
of Che-Landon [66]. For concise writing, the assumptions we state here are a bit stronger than “the
union of the assumptions of these two papers,” but in fact this union suffices for Corollary 2.1.10.
In fact, our result likely holds under even weaker assumptions than required in these papers, which

handle more fine-grained questions.
Acknowledgements. We wish to thank Laszl6 Erdés and Torben Kriiger for many helpful discus-

sions about the Matrix Dyson Equation. BM also thanks Krishnan Mody for helpful discussions.
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2.2 PROOFS OF DETERMINANT ASYMPTOTICS

2.2.1 Proof of Theorem 2.1.1. The proof depends on a careful tuning of many N-dependent
parameters; in the next section we define these parameters and prove some estimates that are
common to both the upper and lower bounds. In the following subsections we then prove these

upper and lower bounds in order.

2.2.1.1 Definitions and common estimates. Let k be as in the assumptions (i.e., given to

us), and write K, n,t, wy, pp for some N-dependent parameters. In fact we will choose

K =M for some ¢ small enough (¢ = x2/16 suffices),

n=N""2

L= N4, (2.2.1)
wp = N*"“/‘l7

py=N""/8,

but we find it more transparent to work with the names K, n, and so on for the bulk of the proof,
checking only at the end that these specific choices make the error estimates useful. We will work

with the following regularizations of the logarithm:

log,, (\) = log| A + in,

lognK()\) = min(logn()\), logn(K)).
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Let b = by : R — R be some smooth, even, nonnegative function that is identically one on [—wy, wp),

vanishes outside of [—2wy, 2wp|, and is wib-Lipschitz. Consider the following events:

Egap = {®(X) has no eigenvalues in [—e ™ eV},

Ess = {ds(flo(x)s Ao(xo)) < N7},

ECOI]C = {’/logff d(ﬂ@(Xcut) - E[IEL{)(XCUC)])‘ < t}?

&= { [ bdio <.

It turns out that all of these events are likely. For &g, and & this is by assumption; we will prove

(2.2.2)

that Econe and & are likely below.

Now we collect some estimates which will be useful for both the upper and lower bounds.

Lemma 2.2.1. We have

N A~ —K K2
’/10&]7{ d(fip(x) = Ao(Xew)) | Lew < N log<1 + 772>

Proof. The proof of [55, Lemma C.2] shows that, if fi4 and /ip are empirical measures of matrices

A and B (which have the same size as each other) and if f is a test function of bounded variation,

\/fdﬂA—/fdﬂB

Then the result follows from the computation || logff v = log(l + %) and the definition of

then

< || fllrv - dxs(fia, iiB)-

Ess. O

Lemma 2.2.2. With

—K K2 c 1 —K
A(N) =N log<1 + n) + 2 1og [ooP((E)) + (51 + 1oz 1)V

we have

[ 1081 d(Elfor) - )| < e1(N).
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Proof. First, by inserting 1g and using Lemma 2.2.1, we find

~ ~ —K K2 c
[ 1081 d(Elfo o) - Elpaco))| < N log<1 ¥ n) 2] log [|acB((€)).

Next, since logff is %—Lipschitz, (2.1.3) yields
) 1 ) 1 i,
[ togk dBlian) — )| < (57 + 0w o ) Blacl i) < (5 + og o )N

Both equations above conclude the proof. O

Lemma 2.2.3. Let to(N) = 24v/27/(nN2T%). If t > to(N), then

(t _ tO(N))2n2N1+2li
288 '

P((gconc)c) < 12exp <_

Proof. The function log,ff is not convex (it is convex on [—7, 7| and concave outside this interval).
But it is a linear combination of three convex functions. Indeed, for ¢+ = 1,2, 3, consider log;, =
log; , k : R — R given by

xT

Top % + IOgn(ﬁ) if x < -,

log, (z) = log, () if —n<az<,

x <

2 T % T’a
logy(z) = !

logff(x) +3— log,(n) if x> n,

—Z if x > —n,
logy(w) =

lognK(x) +3— log,(n) ifx < —n.

Notice that logf;( = 2;”:1 log;, that log; is convex while log, and logs are concave, and that each

95



N—" N—"
[llLip [®]lLip

log; is %—Lipschitz. For each 4, consider the function f; : | M — R given by

£ = (-1 tr(log (B(X)) = (1) [ log(\raga) (4.

The factors of —1 are for convenience, so that each f; will be convex. Notice that

3

S (=1)h (£(X) - E[fi(X))

i=1

P((SCOHC)C) = P(

3 t
> t) < ZIP’(]fZ-(X) CBIA(X)]| > 3). (2.2.3)

Each f; is a Lipschitz, convex function of the many independent compactly supported variables
X1,...,Xy. Thus we can apply concentration-of-measure results of Talagrand. It will be useful
to factor f; = g; o ®, where g; : /N — R is given by ¢;(T) = (—1)1#1% tr(log; (7).

Indeed, since log; is (2n)~!-Lipschitz, we know that g; is (nv2N)~!-Lipschitz (see, e.g., [7,
Lemma 2.3.1], and thus f; is ||®||Lip/(nV2N)-Lipschitz. Furthermore, since (—1)#1 log; is convex,

by Klein’s lemma (see, e.g., [103, Lemma 1.2]) g; is also convex; since we assumed that ® pulls back

convex sets to convex sets, we conclude that {X : f;(X) < a} is a convex set of [——, XM

- Tl ” T@Mip
for every a € R. Then [143, Theorem 6.6] implies that
22 N1+2k
P(Ii(X) ~ My > 1) < 4exp<—”32
where 9, is a median of f;(X). We conclude using (2.2.3) and the estimate
00 22 N1+2e 8v2r 1
) _ 1< . _ | < - - S
RO - 90y < B -0y < o < E T Jar = S
to substitute the median with the mean. O

2.2.1.2 Upper bound. After establishing one more estimate, we prove the upper bound of

Theorem 2.1.1.
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Lemma 2.2.4. With the parameter choices (2.2.1), we have
lim — log E[|det(Hx)|(1 — 1¢.1g.. )]
—lo e - = —00.
Nl—I>noo N g N SSS SCODC m
Proof. Writing £ = Ess N Econe, for any & > 0 Holder’s inequality gives

1
v log Elldet (Hy)|Lec] < log E[|det(Hy)|*™] + log P(E°).

1
(1+0)N (1+0)N

For ¢ satisfying (2.1.6), the first term is O(log /V). Concerning the second term, we have
1 C 1 C C
N log P(g ) < N log[P((gconc) ) + P((gss) )] < _Clog N7
for any C' > 0 and N > Ny(C'), where the last inequality follows from Lemma 2.2.3, our parameter

choices (2.2.1), and our assumption (2.1.7). O

Proof of upper bound. From our assumptions on puy we have liminfy_,o [log|A|un(dA) > —oc.

Thus, by Lemma 2.2.4, it suffices to prove

1
nmsup(N log ElJdet(H )1, L. — [ 1og|A|uN<dA>) <0. (2.2.4)

N—oo

On the events &g and E.one, Lemmas 2.2.1 and 2.2.2 give us

[ 18 dia
_ K ~ ~ K ~ ~ K A~
= /logn d(flo(x) = Ad(Xeuw)) —|—/10g,7 A(f1p (X o) — Elflo (X)) +/10g,7 Elfia( X))

K2
< N~ *log (1 + 772> +t+ /logff Elfia(Xew)] < 261(N) +1 + /log,[f()\),uN(d)\).
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We use this estimate to obtain

N N

1 1

v o8 Elldet(Hn)[Le, Leconc] = IOgEl<H|)\1|1Ai|<K> <H|>\i|]l|xi|>1<> 1155511&0“]
i=1 =1

1

N
eN Jlogr dita(x) (H(l + \>\i|ﬂAi|>K)> ]1555115com]
=1

1 N
< 2e1(N) +t+ - logE [H(l + (AL > k)
=1

From our choice of parameters (2.2.1) and the assumption (2.1.4), this last term is [ lognK dun+o(1).
Furthermore, since the uy’s are supported on a common compact set and K increases with IV, we

have flogf]( dpy = [log, duy for N large enough. Thus to prove (2.2.4) we need only show

lim sup / (log, (A) — log A} (dX) < 0. (2.2.5)

N—o0

To show this, we use

K2

/:o(logn(k) = log| A un(dA) < ;log<1 + n2>

which tends to zero since n does, and

‘/_ (log,, (M) —10g|>\|),uN(d)\)‘ < ,(1-/ (log|\| _1Ogn(>\))‘)\’—1+n d,

which tends to zero by dominated convergence. This completes the proof of (2.2.5) and thus of the

upper bound. ]

2.2.1.3 Lower bound. We first collect some estimates.

Lemma 2.2.5. We have

1 .
N]ogE[eN f(log\Al—logn(A))%(X)(dA)]lggap]lgss]lgcom] > —e9(N),
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where

U
ng N IOgP(ggapa Ess Econes Ep)-

£2(N) = 2 log(1+ Vi) +
Proof. On Egap, for any eigenvalue A of ®(X) we have

772

1 1 e
log|A| — log, (\) = —5 log<1 + /\2> = 3 log(1 + 2N n?).

Similarly, since 1 — b(A) < 1|5y, and log(1+2z) < x for > 0, we have

2 2
[ GogIAl = o, ())(1 = b\ tax) (4) > —;log<l + 2 ) > T

2
wj; 2wy
Thus
E[eN [ (log]-|—log,)dfia (x) ]lggap]lgss]lgconc]lgb]
_Npp 2NE, 2 A= —b)di
>e 2 log(1+e n )E[eNf(logj \ log,))(1 b)d,U«I)(X)]lggap]lgss]lgconc]lgb]
Npp 2NE 2 _ N
_Npy w2
ze 2 log(1+e™% 7 )3 2% P(ggapygssagconmgb),
which concludes the proof. O

Lemma 2.2.6. For N large enough we have

P((&)°) < Q(N‘” . <2“’b>“>.

/

Py \ Wy K2

Proof. By our choice (2.2.1) of wy, tending to zero, uy admits a density on [—2wy, 2wp) for N large

enough. Since b(\) is wib—Lipschitz and bounded above by 1))/<2y,, We use (2.1.3) to find

R 1 . 2N~F 1 f2we
2| [bdhog| < (5 + 1) dawElioon) ) + av((-2un 2us)) < S [ o] da

K 2wb

The conclusion follows by evaluating this integral and applying Markov’s inequality. O
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Proof of lower bound. Lemmas 2.2.1, 2.2.2, and 2.2.5 show that N ~!log E[|det(Hy)|] is larger than

1 n ; PO A .
N 1OgE{€N(f(log| | 10gn)duq>(x)+f log,) d(fin(x) =R (Xyy) TAD(Xeut) E[M‘P(Xcut)]))]]_ggap]]_gss]lgconc}

+ /logf dE[fip( X))

1 N [ (tog]|~log, )dji - K? K ymin
2 N IOgE[e f( Og| I Ogn) “@(X)ﬂggap]lgss]]'gconc] - N " log 1 + F - t + /logn dE[H@(Xcut)]

> / log| |y — (N, (2.2.6)

where e(N) = e1(N) 4+ e2(N) + N*’“log(l + f—;) + t and we have used

[ 1088 (pan(@n) > [ tog(mingAl, K))u(dX) = [ loglAu(dA) (2:2.7)

for N large enough in the last inequality (2.2.6), as the puy’s are supported on a common compact
set and K grows with N. It remains to check that e(N) — 0. This follows immediately from
our parameter choices (2.2.1), except possibly for the term e5(N). For this term, we note that
P(Es) — 1 and P(Egap) — 1 by assumption ((2.1.7) and (2.1.5), respectively), then use Lemmas
2.2.3 and 2.2.6 to show that P(Econc) — 1 and P(&) — 1. This shows that e2(N) — 0, which

concludes the proof of the lower bound and thus of (2.1.8). O

2.2.2 Proof of Theorem 2.1.2. In this subsection we prove Theorem 2.1.2. The proof is largely
similar to that of Theorem 2.1.1, so we will omit some steps.
We make the same parameter choices as in (2.2.1). We also work with the events Egap and &,

from (2.2.2), but & is no longer relevant, and Ecopc is replaced by

61y = {| [ 108,y — Bl x| < o}

Proof of upper bound of Theorem 2.1.2. From (2.1.10) and some elementary estimates, there exists
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a universal constant c., such that, for N large enough, we have
E[eNflogn(A)(ﬂHN _E[ﬂHN])(dA)} < Ceo €XP [<2NC>

Hence

’ >/ Noe

1 1 N [log, (A)ur o (dA) ot R
- log Elldet(Hy)|] < - log B[e™ [ 1My (] < oo n2+ [ 108, (VElfiny ()

2 1/80 NC/Eofl 1 R

For ¢ small enough, the first term decays with N. We complete the proof by applying (2.1.9) and
(2.2.5). O

Proof of lower bound of Theorem (2.1.2). Arguing as in (2.2.6), N~ log E[|det(Hy)|] is larger than

log Efe (J (el =logy)diny + [ logy, duny —ElinyD) g 90 ]+ / log, dEljis]

1 1—log Vi 1 N
NlogE[eNf(log‘ | logn)MHN]lgLip]lggap} — ‘[/‘ — %W]_(]E[‘LLHNLMN) + /log|"uN

As in Lemma 2.2.5, we have
% logE [eN J (log|Al=log,, (\)jirr (d)

]lgLip ]lggap ]lgb:|

o

Po 2NE 2
> ——log(1 —
2 og( tenn ) 2w§

1
- N log P(gLipv ggapv Eb)a

so by our parameter choices (2.2.1) it suffices to show P(ELip, Egap, &) — 1. The event &g,y is
handled by assumption (2.1.5); the event &, is handled by Lemma 2.2.6 (replacing dpy, there
with Wy here); and the event &y, is handled by assumption (L), since (2.1.10) gives P(€f;,) <

exp(— % min{(2Ntn)2, (2N tn)1+20} ). )
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2.3  APPLICATIONS TO MATRIX MODELS

In this section, we check the assumptions of our general theorems, 2.1.1 and 2.1.2, for our different
matrix models. First we present two general and classical techniques that will help us check
these assumptions. Informally speaking, the first technique shows how local laws for the Stieltjes
transform along lines of the form {F +iN~¢: FE € [-C,C]} give polynomial convergence rates of
the averaged empirical spectral measure, corresponding to assumptions (E) and (W). The second
technique proves Wegner estimates of the form (2.1.5) using the Schur complement formula.

In the last Section 2.3.10, we prove the claims made just after Theorem 2.1.1 about the necessity

of its assumptions.

2.3.1 General technique: Convergence rates via local laws. In this subsection, we sum-
marize the general technique for using local laws to derive estimates like (2.1.3) and (2.1.9). We
will use this technique repeatedly for specific matrix models. This idea is classical; see for instance
[19] for the specific estimates we need.

Write sy (z) = [dan(X)/(X\ — z) the Stieltjes transform of fig,, and my(z) = [dun(N)/(A —
z) the Stieltjes transform of pun. Define the distribution functions Fgy(x) = Elfim,]|((—o0,z]),

Fuy () = pn((—o00, 2]).

Proposition 2.3.1. Suppose the measures pny have densities un(-) on all of R, not just near the
origin, and supy ||un(+)||Lee < 00. Assume also that there exist fized (N-independent) constants

A, e1,e9 > 0 such that

3A
/ Efsn(E +iN~)] — my(E +iN~51)| < N2, (2.3.1)
—3A

/|x>A‘FE[m (2) — Fuy (x)] do < N7, (2.3.2)

Then there exists v > 0 with dxs(E[fmy], pn) = O(NTY). If in addition supp(un) C (—A, A) for
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each N, and

‘FE[;}} () = Fuy (33)‘ = Ojg|—00 (,;), (2.3.3)

then there exists ' > 0 with dpy(E[isy], pn) < Wi(Elimy], uy) = O(N~Y).

Proof. From [19, Theorem 2.2], we have

s (Em L) <o~ sw [ VF @t y) — B @)y
Yyis1Un

xT

27 34 . .
+ 2 [ |Rege) = Py @) do+ [ [Elsw (B +in)] = ma(E + )| 4.
n Jz|>A —3A

Since the measures py have densities bounded by S, say, the function F},, is S-Lipschitz; hence
the first term is at most 100Sn. With the choice n = N 7%, the second and third terms are handled
by assumption.

For the Wasserstein distance, let f be a test function with || f||rip < 1. We integrate by parts

(notice (2.3.3) gives us the decay at infinity necessary to do this) to find

| $@) ] = (o)

A

_ \ / :" f(@)Elfiy ] ()

<dis(Elfmy], pn) + /ZA ‘FE[M (z) — FMN(.CC)‘ de < N7V N&17%2

< [ @ @A-D)Elfndo)

and similarly for the left tail. For the bulk, we approximate f on [-2A,2A] with test functions

smooth enough to integrate by parts on f directly, which gives

A
‘/2 F@)(Elany] — pn)(dr)| < (8A + 4)dks(Elfiny]; 1n)-

—2A

This completes the proof. ]

2.3.2 General technique: Wegner estimates via Schur complements. In this subsection,

we summarize the classical idea of using the Schur-complement formula to derive Wegner estimates

on the probability that there are no eigenvalues in a small gap around energy level E. These will
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be used to check (2.1.5) for a wide variety of models.

For compactness, we temporarily drop the N-dependence from the notation Hy. For any j in
[1, N], write H (4) for the matrix obtained by erasing the jth column and row from H, write h; for
the (N — 1)-vector consisting of the jth column of H with the entry H;; removed, and write H >

for the collection of every entry of H except for Hj;.

Proposition 2.3.2. Fiz £ € R and suppose there exists a sequence 1 = ny tending to zero such

that

1 1
E|E|I . H~ = — . 2.3.4
JElUNT [ [m(Hjj—<E+in+h]T<H<ﬂ>—<E+in>)%))‘ H O<Nn> (2:34)

Then

lim P(Hy has no eigenvalues in [E —n, E +n]) = 1.

N—oo

Proof. We have

P(Hy has an eigenvalue in [E —n, E+ 1)) <E[#{j: |\; - E|<n}] <E [22 277—

(35| =2 ()|

< 2Nn sup E[Im(((H — (E + in)~);5)]-
JE[L,N]

=2nE

Moreover, the Schur complement formula gives

1
Hjj — (E+in+hi (HO) — (E +in))~thy)’

((H — (BE+in)™Y);; =

which concludes the proof by the assumption (2.3.4). O

Lemma 2.3.3. Write ﬁjj for the law of Hj; conditioned on Hfj' Suppose that there exists a single

probability measure p on R (independent of N and j) with a bounded density p(-), and constants
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G5 =55 and iy = m'y) such that

Hii — s
13 "My,
Ojj

for every N and j € [1, N]. If there exist o, C' > 0 with

1
inf &, > ~N",
jelﬂl},N]] e

then (2.3.4) holds with n = o(N~'=%) for every E € R.

Proof. For any deterministic z = E + in, and with the notation S := ||u(-)|| e, we have

1 n 1 n
E~ |Im| — :/~ _ d<5~—/7d<SCNa.
Hj'[m<Hj‘—Z>] R(Jjjfﬂ+mjj—E)2+772M(x) N ke T

Define z; = E+i77+h;-F(H(j) —(E+in))~'hj, and 2; = z; — E[Hj;], and notice that Z; is measurable

with respect to H fr with Im(2;) > n deterministically; thus
1 1
sup ElE[Im() HAH = sup E- lEﬁv [Im</v~>H < tSCN“®
jelLN] Hjj =z )| 71 jepany 71 Hjj — Z;
which is o(1/(Nn)) for our choice of 7. O

2.3.3 Wigner matrices. We will use Theorem 2.1.1 (convexity-preserving functional) and

model a Wigner matrix Wy — F as Wy — E = ®(Xy,..., X)), where M = N(J\27+1)’ the X;’s

are independent random variables distributed according to u, and ® is ﬁ times the identity map

which places these entries in the upper triangle of an N x N matrix, minus F Id. This @ is trivially
- _ 1

convex and satisfies || ||, = TN

Now we check Assumption (E) on expectations, with all ux’s equal to the semicircle law pgc.

A. Tikhomirov [147, Theorem 1.1] showed that for every € in the assumption of 2 + ¢ moments,
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there exists n = n(e) > 0 with

dKS(E[ﬂWN}7pSC) < N~ (2.3.5)

Now we transfer this inequality from dks to dpr: If M > 2 and ||f||c < 1, then

< [ Bl Jan) < N

—0o0 — 00

-M
‘ | 1@Eliw] = peo)(d)

| [ sl )

from (2.3.5), and similarly for [3; on [—M, M] we proceed exactly as in the proof of Proposition
2.3.1, to obtain (E).

Now we check the three estimates comprising assumption (C) on coarse bounds.

(2.1.4) Fix ¢ > 0 and write W = Wy = A+ B = Ay + By, where A is defined entrywise by

Aij = (Wij)]l|W,j| <1 _.n¢. Notice that all eigenvalues of A have absolute value at most 1—106N °
I 10N

The Weyl inequalities give us

M) = M(A+ B) < Anas(A) + M(B) < ¢V + \(B)

and similarly \i(W) > X\i(B) — 75€™", so that for fixed E, for large enough N we have, for

any i,

L+ [XN(W = E) L\, w_p)seve <1+ 2MW)[L, w W>deve S 1+ 2|)‘i(W)‘]l\)\i(B)|>ieN5

S T (Pmax (A + N (B)D 5y 1ene < T+ 2[Ai(B)[)y, () 1enve -

For z > 1 we have (1 + 2z) < (1 + 100z2)'/2, so

N N
[1+2(B) L)y, )5 ) H + 1007 (B)})Y/? = det(Id +100B%)/2,
=1 =1

!We also briefly sketch another possible proof of Assumption (E). First, by following the usual Hoffman-Wielandt-
based proof that two moments suffice for the Wigner semicircle law (see, e.g., [7, Theorem 2.1.21]), we can assume
that the entries W;; are replaced with Wij]].|W‘ |<n10es if the 2 + & moment is finite. Second, for this new matrix,

5] <

one can apply the usual Stieltjes-transform-based proof of the Wigner semicircle law using Schur complements (see,
e.g., [7, Section 2.4.2]); the fourth moments of the new matrix are O(N*°¢), which is more than compensated by 1/N
prefactors in the error terms.
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By Fischer’s inequality this can be bounded above by the product of its diagonal entries; that

is,

N N 1z N N
det(Id+100B)Y2 < ][ 1+100Y " B% |  <[[(1+10)]1B3l],
i=1 j=1 i=1 j=1
where for the last inequality we used 3 a? < (3 a;)? for positive numbers a;. Now, for some
constant C' we have EHBUH,EHBU\Q] < ONe ™M < e_%Ne, and notice that we can calculate
E[ A (1 +10 Z;V:l | Bij |)} by expansion and factorization again. All matrix elements appear

with a power at most two, and for any set I of couples (4, ) which can appear in the expansion,

we have E[]],c7|Bal] < (e_%NS)m so that

1
N IOgE

(oo

i=1 j=1

1 N N 1 are
< ylog[1+103 e ) —o0.
i=1 j=1

(2.1.5) The existence of gaps near zero with high probability (indeed, gaps of polynomial size) was

established by Nguyen [125, Theorem 1.4], including the case of general energy levels E.

(2.1.6) Fix d so small that p has finite 2 4+ 2§ moment. Let Sy be the symmetric group on N letters,
and for any permutation o € Sy define X, = ‘(W —E)ioay - (W= E)N,U(N)" Then

|det(Wy — E)| <3, X, and by convexity of 2 — x'*° we have

1+4
) ZUX}JF&
|det(Wy — E)|' < (zsj XU) < (N!)WT.
gESN

If VNY is distributed according to p, then for each E € R there exists cg = cg(u,d) such
that
max(E[[Y — E['""]E[)Y — EFFLE(Y|LE[Y ) < ep < oo.

Thus sup, E[X2 7] < (¢g)N. Since N! < NV, this gives E[|det Wy |'T¢] < eNNO+HON yp to

factors of lower order, which suffices.

To prove assumption (S) on spectral stability, we follow Bordenave, Caputo and Chafai, see [55,
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Lemma C.2] and [54, Lemma 2.2]. Write W™ = ®(X,y;) for the matrix Wy with entries truncated
at level N7 and we will prove (S) for fixed, small enough x with respect to €. From interlacing

(see, e.g., [18, Theorem A.43]) that

N . 1 2
dics(Awy, Awge) < 57 rank(Wy — WEY) < i D N

1<y

where the last inequality follows since the rank of a matrix is at most the number of its nonzero

N(N+1)

entries. The 5 random variables (L, |>n-r)1<icj<n are iid. Bernoulli variables with

parameter
g
J

pn =P(|[W;;| > N7F) < eNC2tR)@He) ¢ N5

if we choose  small enough, with ¢ = [|2|*™pu(dz). Writing h(z) = (2+1)log(z+1) — 2, Bennett’s

inequality [47] gives

N(N +1 t
(St 0 s ) <onn(-on (1)

i<y

with

o° = pr(l —pN) <

NN +1)

2

for N large enough. With the choice t = N1~ — ij\r = %Nl*n (for k small enough) we have

% — +o00, and using h(z) ~ xzlogz as  — 400 we obtain

1—-k

o, [N 1 Ni=r
A~ A —K —K
log P(dks (fiwy, fiwgn) > N7%) < —o h( 572 ) < -CN log< 952 )

for some constant C' and N large enough, which completes the proof of (2.1.7).

Finally, we prove the remark just before Corollary 2.1.3, namely that E[| det(Wx)|] = 400 when
E(|Wi2]?) = +oo. Indeed, we can write E[|det(Wy)|] = E(|XWE + Y Wia + Z|) where the random
vector (X,Y, 7) is independent of Wiz and X = det((Wij)s<ii<n). We have P(X = 0) < 1 so that

there exist compact intervals I, J, K in some [—A, A] with a := inf,c;|z| > 0 and P((X,Y,Z) €
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IxJxK) > 0. Forany such (X,Y,Z) € I xJx K we have | XW4L+YWia+Z| = aWE,— AW — A,

so that

E(|XWiy +YWip + Z|) 2 E(IXWih + YWie + Z|1(xy,2)erxIxK)
> E((aWiy — AWy — A xy,z)erxixK)

= E(aW3 — AWy — AP((X,Y,2) € T x J x K) = +oc.

2.3.4 Erdés-Rényi matrices. We will use Theorem 2.1.1 (convexity-preserving functional) and

model an Erdés-Rényi matrix Hy — E as Hy — E = ®(Xy,..., Xy ), where M = w, the X;’s

1

times the
Npn(1—pN)

are independent Bernoulli random variables with parameter py, and & is

identity map which places these entries in the upper triangle of an N x N matrix, minus £ Id. This

1
VNpy(1-pN)

Now we verify assumption (E) with all ux’s equal to the semicircle law ps.. In the proof, we

clearly satisfies assumptions (I) and (M) with ||®||pi, =

control the extreme eigenvalues (more precisely the smallest and second-largest) with results of Vu
[154], improving on earlier results of Fiiredi-Komlés [83]; and we control the bulk eigenvalues using
the local law of Erdés et al. [74]. Often we use much weaker consequences of the results, replacing
log N factors by polynomial factors and so on.

More precisely, consider ﬁfv = Hy — E[Hy]. This matrix has centered entries of variance

0% = %, supported in [—K, K] with K = \/glﬁ Thus the proof of [154, Theorem 1.3, Theorem

1.4] shows that there exist C,~y > 0 with

— log N
2 V) < N7
IP’(|HN| >2+C(€NE)1/4) <N (2.3.6)
for N large enough. Recall we order eigenvalues as A\; < --- < Ay; since E[Hy]| is rank-one and

positive semidefinite, interlacing tells us that max(|Ai(Hy)|, Av—1(Hx)|) < |Hx|, and thus we
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have the very coarse bound
P(max(|A1(Hn)|, [Av-1(HN)[) 2 3) < N7

for N large enough. In particular, whenever f is a test function with ||f||s < 1, we have

00 N
| @) Bl - o)) < ;;MMHN) >8) < AN,

and similarly for the left tail, which is even easier because we do not need to separate out the
smallest eigenvalue.

Now we handle the bulk eigenvalues. Let F,_ , Fj, and Fg, be the distribution functions for
Pse, Py, and E[fim, ], respectively. Then [74, Theorem 2.12] shows that there exists v > 0 such

that, for N large enough,

P( sup ‘Fpsc(x) — F@)| < N_Ha) > 1 — exp(—v(log N)>loslos Ny,

z€[—3,3]
Since sup,|F),.(x) — F(x)| < 2 deterministically, this gives

NE 0g 1o,
sup ‘Fpsc(x) - FE[ﬂ](m)‘ < ~ 1 2 exp(—v(log N)?loeloe Ny,
z€[-3,3]

The proof of (E) is then easily completed as in the case of Wigner matrices.

Now we check the three estimates comprising assumption (C) on coarse bounds.

(2.1.4) We have

N 1
Hyl2<S |HP< —— < =N%*= 2.3.7
| Hn | Z]: il v —pm) Sz (2.3.7)

almost surely, so (2.1.4) is trivially satisfied.
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(2.1.5) For bulk energy levels, meaning F € (—2,2), one can show

1 1
IP’(HN has no eigenvalues in (E - w2 E + N2)> =1-o0(1)

using the bulk fixed-energy universality results of Landon-Sosoe-Yau [113, Section 1.1.1]; the
argument is given in our discussion below of the free-addition model. For |E| > 2, eigenvalues
other than Ay are handled with the result of Vu above (2.3.6). For Ay (only a concern for

positive E values), the Weyl inequalities give

Npn
— DN

AN(Hn) 2 An(E[HN]) + M (Hy — E[Hy]) = + M (Hy — E[Hy])

1
> N2 4 \(Hx — E[HN)).
7 + M(Hy — E[HN])

By (2.3.6), the last term is at least —3 with probability 1 — o(1); thus Ay cannot stick to any

fixed &/ > 2.
(2.1.6) This follows from (2.3.7), using |det(Hy — E)| < ||Hx — E||V.
For assumption (S) on spectral stability, we note that the threshold for cutting is

N—H

= N /pn(l—pn) > VENT R > 1
HCI)HLip

for k < § and large enough N. Since the X; = 0 or 1, this means that X = Xy, and hence (2.1.7)

is trivially satisfied.

2.3.5 Band matrices. We will use Theorem 2.1.1 (convexity-preserving functional) and model a
band matrix Hy as Hy = ®(X1,..., Xy ), where M = (W +1)N, the X;’s are independent random

variable distributed according to p, and ® is —— - times the identity map which arranges these

V2W4
entries into a band matrix. This ® is trivially convex and satisfies ||®||rip = \/ﬁ Throughout

this section, the constant € will be the same as in the assumption W > N°¢.
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To check Assumption (E) with uy = pse, we will use Proposition 2.3.1 with A = 3. (By
translation invariance, it suffices to check (E) at £ = 0.) The bulk estimate (2.3.1) follows from
the stronger local law of Erdés et al. [77]; the tail estimate (2.3.2) uses the tail estimates of
Benaych-Georges/Péché [46].

Write sy (z) for the Stieltjes transform of fif, and mg.(z) for the Stieltjes transform of the
semicircle law. The local law [77, Theorem 2.1] gives constants C' and ¢ such that, if z = E + in

with E <3, s :=||E| — 2| > N9 for § = 3¢/20, and n = N%~¢ then
P(|sn(2) — mee(2)| = N7°) < CNelloslos ),
Together with the trivial bound [E[sy(E + in)] — ms(E +in)| < %, this gives
IE[sn(2)] — mse(2)| < N~0 + 20 N=—60—clloglog N) < =3

for such z values. Writing e; = ¢ — 66 > 0 and using again the trivial bound for x < N9, we
obtain

3
/ [E[sn(E +1iN"1)] — mgo(E +iN ") < 6N ° + 8N=1 70
-3

By our choice of § we have €1 — ¢ < 0; this suffices to check (2.3.1).
For the tail estimate (2.3.2), we note that ’FIE[;)] (x) = Fp,. (x)‘ < P(||Hn|| = =) for, say, z > 3.

The proof of [46, Theorem 1.4] gives, for any k > 1,

6712\ 1
B(| Hy|| > z) < Na—2t4b (1 B W) |

Choosing k = ky = N%/?°, we verify (2.3.3) and find, for N large enough,

o0 . /4 Ne/20
[T B 2 20 <ontH(5)
3

which is much faster than we need. The left tail is estimated similarly, and this verifies (2.3.2) and
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thus (2.1.3).

Now we check assumption (C) on coarse bounds.
(2.1.4) The proof for Wigner matrices with 2 + ¢ moments works verbatim here.

(2.1.5) Since we assumed our entries have a bounded density, this follows from Proposition 2.3.2 and

Lemma 2.3.3.
(2.1.6) The proof for Wigner matrices with 2 + ¢ moments works verbatim here.

The proof of Assumption (S) is similar to the case of Wigner matrices; in particular it holds

assuming only that p has 2 4 € finite moments.

2.3.6 Sample covariance matrices. As noted above, this model is not covered by either of
our theorems directly. But it can be proved by mimicking the proof of Theorem 2.1.1 (convexity-
preserving functional) with the following changes. We let M = pN, let X1, ..., X3s be independent
copies of u, and consider the map ® = &5 : RM — “p that places its arguments in the entries
of the p x N matrix ¥ = Y}, v and returns %YYT — E. There are two problems with applying

Theorem 2.1.1 as written, but we will implement the following workarounds:

1. @ is not convex (but we will use the standard Hermitization trick that compares eigenvalues
of YYT with eigenvalues of the (p + N) x (p + N) block matrix (YOT }6), which is a convex

function of the entries of ).
2. ® is not Lipschitz, since it grows too quickly at infinity (but the Hermitization is Lipschitz).

Below, we will verify assumption (E) with some value of k. For now, we redefine X, (for this

model only), using this same &, as

(Xeut)s = Xi1 (2.3.8)

1.
|Xi|<N 2
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We choose this scaling so that ®(Xcy)+ F has entries at most N =2, similar to what happens in the
Wigner and Erdés-Rényi cases. Later we will check assumption (S) with this new definition, as well
as assumption (C). First we show that all of these assumptions yield determinant concentration.
Much of the proof of Theorem 2.1.1 works verbatim in this new setting, since for example it
never uses the old definition of X directly, using instead the stability estimate (2.1.7) which will
still be true for us under the new definition. The biggest change is in the proof of Lemma 2.2.3,
where we applied results of Talagrand using the convexity and Lipschitz properties which no longer

hold. The replacement for Lemma 2.2.3 is as follows.

Lemma 2.3.4. Let to(N) = 22532 114 > 0(N), then
VANZT®

P((Econc)?) < 12exp (_ (t— tN()(N))277N1+2n>.

1713

Proof. By translation-invariance, it suffices to check this at £ = 0. We use the classical trick of

considering the (p + N) x (p + N) matrix

Opxp Yy,
Hy = Hn(X) = pep N

2l

T
YZ,J?N 0N><N

For any test function f, we have

tr(f(9%)) = 2te(f(YYT/N)) + (N =) f(0). (2.3.9)

Thus we need to consider Lipschitz, convex decompositions of the function x +— 1ogf7< (2?), which
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we do as follows:

;’iﬁx — 3 +1log,(nV3) ifz< —3Y4 /m,

log, () = { log, (+?) it — 314 /5 <o < 3VA M,

gi/fx -3+ log,(nV3)  ifz > 314, /m,

33/4 . 1/4
. 57 if x < 3Y%/m,
logy(z) = { 7
logh (22) + 3 —log, (nv/3) if x > 3V /7,
3 : 1/4
N —o7 ifx > -3 Vs
gy = { VT

lognK(mQ) +3 - logn(n\/g) if z < —31/4\/ﬁ.

Notice that IogWK (%) =332, log;(z), that log, is convex while log, and logs are concave, and that
each log; is 2?—[ ~Lipschitz. Then we consider the functions f; : [-N " T1/2 N=#+1/2]M _ R given
by

Fi() = (~1)"#1 1 tr0g, (9 (X))

Using (2.3.9) and mimicking the proof of Lemma 2.2.3, we find

P(Ee) = P | trllogh (9%) — 5 Elts(logi (9%))] > ) < ZP( R0~ EFCOI| > 5t).
As in the original proof, each ﬁ is V2N B A - -Lipschitz, and since the map X +—

N2iVN — Nr

is convex (this is the point of the Hermitization) we know that each fi is convex as well. Then

Talagrand’s inequality gives
]Fi - mfi

B(

and we conclude as before. O

t2 N1+2ﬁ
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It remains to check assumptions (E), (C), and (S) (the latter under the new definition (2.3.8)).
The only assumption that is not translation-invariant (i.e., that depends on the energy level E) is
assumption (C).

For assumption (E), [148] proved that if x4 has 2+~ moments then there exists (explicit) () > 0

such that

dKS(E[,a%ny],,U/MP m) 5 N_“('Y).

From this Kolmogorov-Smirnov distance information we evaluate dgy, in the same way as for Wigner

matrices with 2 4y moments. It remains only to understand dgr,(ty;p 2n , iarP), and this is only
N

necessary in the case v < 1 (since when v = 1 we assumed py = N). If 71,72 € [g,1 — €], then the

difference between the densities gives

dBL(UMP 1 PMP,y,) = Oe (\/ |y1 — 72|>-

Since we assumed in (2.1.13) that |B¥ — | is polynomially small, this suffices to prove (2.1.3).

We check the three estimates of assumption (C) as follows:

(2.1.4) This follows the proof of the Wigner case, but using the Weyl inequalities for singular values
instead of those for eigenvalues. We write out the beginning of the argument because some
of the powers change. For some € > 0, write Y/V N = A+ B, where A is defined entrywise

by
1

Ajj = ——Y;1 .
J ? 1 1 ,5NE"
\/N m|Yij‘<1oN€2

1

Then A has singular values at most ﬁe%N °, and the Weyl inequalities give

05(Y/VN) < oman(A) + 0:(B) < %e%Nf + 0u(B)
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and similarly o;(Y/VN) > 0;(B) — %e%NE, so that for each ¢ we have

1+

)\i(YYT/N - E)‘]l|)\i(YYT/N—E)|>eNE s+ 2)\i(YYT/N)]1A (YYT/N)>1eN®

i

_ 2

< 2
<1+ 80; (B)]lai(B)>%€2

Then from Fischer’s inequality we have

p
1=

P N
(1+ 803(3)]10i(3)>%eéwe) < det(Id+8BB”) <[] (1 +8> ij) .
1 i=1 j=1

Since B is non-Hermitian with independent entries, the same argument as in the Wigner case
goes through here: when we expand and factor, each matrix entry appears at a power at most

two.

(2.1.5) We mimic the proofs from Section 2.3.2, making the following changes. We closely follow
the proof of some Wegner estimates for complex Wigner matrices from [76, Theorem 3.4],
as adapted in [58, Proposition B.1] to the symmetric case. Our estimates below will be
coarser as we can afford any polynomial error, contrary to the optimal estimates from these
references. Let E;n >0, n=¢/N, I =[E—n,E+n], 2= FE+inpand Nj = [{u; € I}|. In
the covariance matrix setting, the Schur complement formula gives, for any 1 < j < N and
defining X = Y/V/N and H = YY*/N (see e.g. [53, Equation (3.8)])

-1

(H=2)"i = (-2 - 2X] Ri(2) X;)

where we define X; = (Xj5);, X](Q = X; 12 and R;(z) = (X®)*X® — 2)~1. This implies,
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by the Cauchy-Schwarz inequality,

2 2 1 ?

EN714] < C(Nn)°E (Im s N G ) La
—Z = N 2a=1 Xz
N N 1
< Ce’E [((Z caa)” + (B =Y daka)?)” ﬂA]
a=1 a=1
for any event A, where
1 NA(E — \o) Aok

do =

Co —

N N2(A\— E)24¢e2 N2(A\y — E)2 + &2

with (Aa)i<a<n—1 the eigenvalues of (X(1)*X (M) with corresponding L2-normalized eigen-

vectors ug’s, and &, = |ug - Y1|%

Let (7%)1<k<n be implicitly defined through [J* pmp 4 (dz) = k/N, with pp 4 from (2.1.14).
If E < 9Nz, we define m = [3N/4]. If E > 7|yyz, let m = [N/4]. Convergence of
N1 Zszl Oy, (p1,. .., pn are the eigenvalues of H) to pnp,, under the minimal assumption
of finite second moment of the entries [155] has the following elementary consequence: For
any ¢ > 0, P(Ax) = 1 —o(1) where Ay = Ny/7<pesn/zilie — k| < c}. By interlacing,
on Ay the (d,i¢)o<e<s all have the same sign and absolute value greater than N~2, and
Cm,Cms1 > ce/N?. Hence we can apply [58, Equation (B.4)]? with 7 = 0,7 = p = 2 (and

either F or —FE depending on the sign of the d,,,’s) to obtain, on Ay,

al 2 = 2\ -1 C N10
E CaSa + E— da o7 a < . < C )
" ((0;1 € ) ( O; § ) ) \/mmln(dm+l7 dm+27 dm+3) 3

so that E[N?14,] < N'% and in particular P(N7 > 1) — 0 for e = e V",

(2.1.6) This proof has the same idea as the one for Wigner matrices; the only difference is that the

product of entries associated to one permutation is estimated as follows. Fix § so small that

>The assumption (2.1.12) is exactly the needed input for [58, Lemma B.4]. Note that although this Lemma
assumes p has finite moments of all orders, this is actually not used in its proof.

78



o has finite 2 + 26 moment. For any permutation o € S, define

Xo = |(YYTIN = B}y - (VYT N = B |-
Let

cs = max(B[| Y117, E[|Y1,17*)) < 0.

+4

Then from convexity of z — z'7° we have

146
1 R i
M Jz a i) 6,0 (% < m Z H
‘71) 7.]1?_1 1=1 =1

140
Edz o(7) Y;szO’Z Eéz ,o(4) ) ’
J1seesdp=1
and thus
r |4 N 146
E[XI—HS H }/tL ]Y E(Sz O'(Z))
=1 ]:1

E

4,i U % Jz

<H< T |Er>> M]

N
>
Jisenjp=1
N
>

é
. E[(Zj,,..5,) ]
Jise-nsdp=1

Now each Zj, . j, is the sum of 2P terms, each of the form |EPF TR Y | for

Zv]zg 0'(12 ]7,
some k € [1,p] and some collection of distinct integers i1,...,i € [1,p]. Since they are
distinct, each entry of the matrix Y appears with power at most two in such a term; since

these entries are independent, we have

_ _ 2p(1+9
E <,Ep k H ‘YWQYU(Q)JZ.A) < |E,(p k)(1+6)c§k < max(|E|, cs, 1)2p(1+5) —. cépE( +6)

(=1
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Then Minkowski’s inequality in L' gives

) O] < (265 )P0,

E[X1H] < sup E[(Z;
j17"’7jp

The rest of the proof is similar to the Wigner case.

Finally we check assumption (S) with the new definition (2.3.8). Write Youy = ®(Xcut) for the

p x N matrix Y with entries truncated at level N~%11/2; then it is classical that

R R 1
dxs(AyyT /N, fly,, yT /n) < » rank(Y — Yeut)

cut

(this follows from interlacing of singular values; see, e.g., [18, Theorem A.44]). The rest of the
argument with Bennett’s inequality goes through from here; note that P(|W;;| > N7") and
P(|Y;;] > N=%*1/2) are of similar order because Y has order-one entries but the Wigner matrix W

_1 ;
has order TN entries.

2.3.7 Gaussian matrices with a (co)variance profile. We will use Theorem 2.1.2 (concen-
trated input) to prove Corollary 2.1.8.B. First we need the following sequence of lemmas estab-
lishing consequences of our model assumptions (such as the log-Sobolev inequality and tail decay

estimates).

Lemma 2.3.5. Let C = Cy be the covariance matriz of the upper triangle of Hy considered as a

matriz with entries

. . . N(N+1) _ N(N+1
Gaussian vector, i.e., C is an (2+ ) 5 N 2+ )

Cij),(k,0) = Cov(Hij, Hye) = Cov(Wij, Wie).
Let p be as in the weak-fullness assumption (wF'). Then, in the sense of quadratic forms,

C>N"1"7rId.
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Proof. We claim that

—

w @ N5 (GoB) |y (2.3.10)

where WgoE is distributed as a GOE matrix (i.e., independent Gaussian entries up to symmetry
with E[(Wi(jGOE))Q] = %) and where W' is some real symmetric Gaussian matrix independent of
W(GOE)'

Indeed, consider the N2 x N? covariance matrix €y of the full matrix W (not just the upper
triangle). We will index this by matrix locations, i.e., € has entries (6w ) j) (k). Write €cor for
the covariance matrix for GOE. We index a vector B € RV similarly, writing By; j), and associate

with it the matrix B € RV*N defined by

Bij = B -

Notice that the matrix B need not be symmetric. Whenever B has unit norm, we have

~ ~ 2

1 1, ==p = 1 B+ BT

<B,C@ﬂGOEB> = N Z B(iyj)((sikéjg + (5i€5jk)B(k,£) = N TI‘(BBT + B2) = — TI‘(( ) )
1,5,k,0

Thus by the weak-fullness assumption (wF) we have

(B,%wB) = E[(Tx(BW))?| =E

~ =T 2
2
S~ 2
B+ BT
> NP Tr(<+2> ) = (B, N P%corDB).
To complete the proof of (2.3.10), we write
¢w = N P6cok + (6w — N PCcor)

and interpret the matrix in parentheses on the right-hand side, which we just showed is positive

semi-definite, as the covariance matrix for W’.
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N(N+1)  N(N+1)
2 2

Now we consider the covariance matrix C = Cy of the upper triangle of W,

N(N+1)
and define Cqog and Cyy similarly. Then whenever v € R™ 2 is indexed with upper-triangular

entries we have

<U,va> = <U, N_pCGOEU> + <U,CW/’U> > N_p<U,CGOEU>

=N"I7F (Z U(2i,j) + 20(2@1)) > NP3

i<j i
which concludes the proof. O

Lemma 2.3.6. For every ¢ > 0, there exists cc > 0 such that the law of the upper triangle of Hy,

considered as a vector, satisfies the logarithmic-Sobolev inequality with constant CCNWC.

Proof. Since the logarithmic-Sobolev inequality is preserved under translations, it suffices to prove
the statement with Hy = Wy + E[Hy] replaced by Wy. This is essentially an exercise in spelling
out our model assumptions, which come from [75].

The upper triangle of Wy is a Gaussian vector with covariance matrix C. Define the matrix |C|

N(N+1) . . .
, and whenever v € R™ 2 is a unit vector, define the unit vector |u|

by |C|(i,j),(k;,€) = ‘C(zyj),(k,f)
by \u|(i7j) = )u(m)‘. Then
(u, Cu) < (Jul, [Cllul) < [I[C]]-

But our assumptions (D) on correlation decay imply that |||C||| <¢ NWC; see [75, (6b), Assumption
(C)], specifically noting that [||«[|5" in their notation is the same as N|||C||| in ours (the factor N
appears since their normalization is Hy = Ay + ﬁWN to our Hy = Ay + Wy).

Since C is invertible by Lemma 2.3.5, this implies the log-Sobolev inequality via the Bakry-

Emery criterion. ]

Lemma 2.3.7. The flatness assumption (F') implies, for each i,j, N,

p
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Proof. By writing e; for the jth canonical basis vector, understood as a column, and writing ()T for
transposition, we have E[VVZ%] = E[W;;W;i] = E[We;(e;)T Wi = (e:)TE[We;(ej)T Wle;, but by the
flatness assumption (F) we have ﬁ = ﬁ Tr(ej(e;)) < (e)TE[Wej(e;)T Wle; < & Tr(ej(e;)T) =
0

=

Lemma 2.3.8. We have supy E[|Hy||] < oo

Proof. Since we assumed supy ||An|| < oo, we need only check supy E[||Wn||]] < co where W =
Wx = Hy —E(Hy). We apply the relevant local law from [75]. This local law provides a sequence
of measures uy which well-approximate the empirical measure of W. The exact form of py does
not matter for our purpose; what does matter is [5, Proposition 2.1, Equation (4.2)], which we
combine to obtain supp(uny) C [—2/2p, 2v/2p] uniformly in N. Then the local law [75, Corollary

2.3] implies that eigenvalues of W stick to supp(uy) in the sense that, for some constant C, we

have
P(|W| = 2v2p+1) < CN~1.
Thus
E[|WI*] < 2v2p + 1)* + E[|WI*1y 52y 3p41) < (2v/2p+1) +\/EHW|| P(|[W] >2v2p+1)

and the last term is o(1) provided E[||W|%] satisfies some weak bound: Since the entries W;; are

centered Gaussian with variance at most & by Lemma 2.3.7, Hélder’s inequality gives

E[[W[Y) < E[e(Wh)] < Y BIWWaWieWel < 3 (BWAEIWAEVAEA) < 3N,
1,7,k,0 1,7,k,0

which is sufficient. O

Lemma 2.3.9. There exists C' such that, for every t > 0, we have

P(|[Hy| > t) < e~ VN max(t=C0),
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Proof. For definiteness, we consider the logarithmic Sobolev inequality from Lemma 2.3.6 with

1/2

constant ¢cN~/%, ¢ = c¢yj5. We apply Herbst’s lemma with the map Hy + |[|[Hx/||, which is

Lipschitz with constant v/2 (by the Hoffman-Wielandt inequality), to obtain for any a > 0

E[eaHHN”] < e SUPN E[”HNHPF%N_I/QQQ'

To finish, we bound E||H | with Lemma 2.3.8, choose o = v/N, and apply Markov’s inequality, so

that the result applies for any C' > supy E[|Hn||] + ¢/2. O

Proof of Corollary 2.1.8.B. By the Herbst argument, Lemma 2.3.6 implies assumption (L) on Lip-
schitz concentration.

We now check Assumption (W), with the measures pun given as the solutions of the Matrix
Dyson Equation. Most of this argument consists of importing results of Ajanki et al. and Erdds
et al. Indeed, combining [5, Proposition 2.1, Equation (4.2)], we find that the supports of the

measures uy satisfy

supp(un) S (—([An | +2v/2p), [| ANl + 2/2p). (2.3.11)

Since the right-hand side is uniformly bounded in N, so is the left-hand side. Furthermore, [5,
Proposition 2.2] shows that each py admits a density uy with respect to Lebesgue measure (on
all of R), and that these densities are c-Hélder continuous for some universal ¢; hence they are
bounded, uniformly in V.

To check (2.1.9), we use Proposition 2.3.1. Write sy for the (random) Stieltjes transform of
firry - For the Stieltjes-transform estimate (2.3.1), we use the local law [75, Theorem 2.1(4b)], which
implies that there exists a universal constant ¢ such that, for every sufficiently small € > 0, there

exists C; > 0 with

P(’sN(E +iIN~F) —my(E +iIN"F)| > NeUF+29=1 for some |E| < Nloo) < C.N710,
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Using the trivial bound % for a Stieltjes transform evaluated at E + in, we obtain
|E[SN(E + iN—CS)] o mN(E + iN—cs>| < Ns(1+20)—1 + ZCENCE—IOO
for all |E| < N'%°, which suffices to check (2.3.1). Moreover, if 2 > max supp(uy) we have
| Py (2) = Fiuy (2)] = 1 = Fgpy (@) < P([H || > @) < o7V max(t=C0)

from Lemma 2.3.9, and similarly for the left edge, which gives (2.3.2) and (2.3.3). This verifies
assumption (W).

Finally we check the Wegner estimate, with the general Schur-complement strategy. Recall we
wrote C for the covariance matrix of the upper triangle of H = Hy (we will drop the subscript N
for the remainder of this proof). Now we will write C].Aj for its minor obtained by erasing the column
and row corresponding to Hj;. Since C is invertible by Lemma 2.3.5 (and positive semidefinite),
so is its minor CjAj by interlacing. Conditioned on H 7 we have that Hj; is a Gaussian random

variable with (an explicit mean that does not matter now and) variance

(05)° s = Var(Hy) = > Clapnn (€)™ Dk, o0 Cor ) ()
k<t k' <t/
(kL)#07)7 (K )

2 )\min (C) 2 N717p7

(C1)j

where we used Lemma 2.3.5 in the last step. By Lemma 2.3.3 and Proposition 2.3.2, this proves

(2.1.5). O

2.3.8 Block-diagonal Gaussian matrices. As in subsection 2.3.7, we will use Theorem 2.1.2
(concentrated input). Considered as a vector, the upper triangle of Hy satisfies log-Sobolev with
constant %, since it consists of independent (possibly degenerate) Gaussians with variance at most

% This implies the Lipschitz-concentration assumption (L).
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Now we check assumption (W). We assumed in (R) that the MDE measures ;i have a bounded
density; they lie in a common compact set by the estimate [6, (3.32a)] and arguments like those
around (2.3.11), so it remains only to check (2.1.9), through Proposition 2.3.1. If sy denotes the
Stieltjes transform of Hy, then the local law [6, (B.5)] implies that there exist universal constants

0 > 0 and P € N such that, for every 0 <« < ¢, there exists C, with

yP

]P’(’sN(E +iN7Y) —my(E+iN77)| > for some F € R) < C,N~100,

For the tail estimate (2.3.2), we essentially mimic the proof in the case of Gaussian matrices with
a (co)variance profile, with the following differences: Here the estimate supy E[||Wy]|?] < oo is
easier, since (recall that Wy is block-diagonal with blocks X, ..., Xx) we have E[|[Wy|[?]"/? <
K B[ X:][?]*/?, and it is classical that supy E[||X;]|?] < oo since X; is a Gaussian matrix whose
entries all have variance order %, by assumption (MF). Since the log-Sobolev constant is now at
most p/N, we obtain P(|Hy|| > t) < e~ N max(0.1=C) for some constants ¢, C' > 0, which verifies
(2.3.2) and (2.3.3). This completes the proof of (2.1.9).
Finally we check the Wegner estimate (2.1.5) with Proposition 2.3.2. Here Lemma 2.3.3 applies
immediately, since the conditioning is trivial, and we assumed in (MF) that the variances on the

diagonal are all at least of order %

2.3.9 Free addition. We will use Theorem 2.1.2 (concentrated input). Write Hy = E+ Ax +
ONBNO%. Concentration for Lipschitz test functions follows from classical results of Gromov-
Milman: If S = E + supys((||An|| + ||Bn||) and f : R — R is Lipschitz, then (see, e.g., [7,
Corollary 4.4.30])

2 N2
(| ) - REDUEI]| > 5) < 200 <_128;2]||Vf”%>

which suffices to check (2.1.10) and thus assumption (L).

For assumption (E) with the reference measure uy = pua B pup, we will use the local law of Bao
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et al, 22, Corollary 2.8]: for every € > 0 and all N > Ny(e), we have

P(dxs(ﬂHN, paBup) > N_HE) <N

This implies dxs(E[fmy], pa Bup) S N~1*¢. We obtain the same estimate for Wy as in the proof
of Proposition 2.3.1 (there are no tail estimates because all the measures fiy, and p4 B up are
supported on a common compact set).

It remains only to check the Wegner estimate (2.1.5). The argument is different depending if F
is in the bulk of u4 B pp (meaning in the interior of the single-interval support), or if F is outside
the support. In the first case, we prove the Wegner estimate with the much stronger fixed-energy

universality results of Che-Landon [66, Theorem 2.1]. This result implies

€ €
lim IP’(H has no eigenvalues in (E — B+ )> =1-— F(e),
Novoon U & N(pa B pp)(E) N(pa B pup)(E) )

where F'(¢) is a special function found by solving the Painlevé V equation satisfying lim. o F'(¢) = 0.
Thus

1 1
lg&iong(HN has no eigenvalues in (E — Nz E+ N2>> >1-— lirrslisoup F(e)=1.

In the second case (if E is outside the support of u4 B up), the Wegner estimate is much easier,
since indeed P(no eigenvalues in (F — §, E 4 §)) — 1 for small enough §. This follows, e.g., from
the large-deviations principle for the extremal eigenvalues of this model established by Guionnet

and Maida [102], or from the edge rigidity of Bao et al. [22].

2.3.10 Proofs of examples showing necessity of assumptions. In this subsection we show
the importance of two of the tricker assumptions of Theorem 2.1.1. Precisely, for each of (2.1.4) and
Assumption (S), we give an explicit example satisfying all the assumptions of that theorem except

for the one in question, for which the conclusion fails. All notations refer back to that section.
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Our example where (2.1.4) fails and determinant concentration fails is the following: Let
(Xij)1<i<j<n be centered, ii.d. with variance 1 and a compactly supported and bounded den-
sity; choose some 6 € (0,1) (e.g. 6 = 1/8 works) and let A be deterministic, diagonal, and
defined through A; = eV 9]li< ni-0 with all other entries zero; and define symmetric H = ®(X) as
Hij = ®(X); = % + A;j for ¢ < j. In this example, uy = psc.

Our example where Assumption (S) fails and determinant concentration fails is the following:
Let (Xij)i<i<j<n be as above, include the additional random variable Xo with P(Xo = N) =

N=1 =1—-P(Xg = 0), and define A = XgIdy; then we let H = ®(X) be symmetric defined by

Hij =®(X);; = f/(% + A;; for @ < j. In this example, uy = psc.

In the remainder of this subsection, we prove that these examples have the claimed properties.

2.3.10.1 Necessity of bounds on large eigenvalues.

Write the compact support of the X;’s as [T, T]. This proof is essentially an application of the
Weyl inequalities. Note that ||®||1i, = N —1/2. since the X;’s are compactly supported, this means
Xewt = X for k < 1/2 and N large enough, and hence (S) is trivially satisfied. Equation (2.1.5)
holds by Lemma 2.3.3. If k < 6, then (E) holds with uy = ps. by interlacing; indeed, defining the
matrix G by G;; = %, we have dis(fic, furr) < + rank(A) = N=%. Since G is a Wigner matrix
with all moments finite, [19, Theorem 4.1] shows dks(E[iic], psc) < N~'/4, and thus if 6 < 1/4 we

have

dKS(E[ﬂH]v psc) 5 N_e'

We transfer this from dkg to dpr, in the same way as for Wigner matrices, above. For (2.1.6), the

Weyl inequalities give deterministically

N N
| det(Hn)| = [TIN(HN)| < [T(4) + TVN)
i=1 i=1

_ (eNe +T\/N)N179(T\/N)N_N170 < (2€N9)N179(T\/N)N
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which suffices to check (2.1.6) (with any § > 0).
On the other hand, (2.1.4) fails. Indeed, by the Weyl inequalities the N'~9 large eigenvalues of
H satisfy
A z>eN —TVN > %GNG, (2.3.12)

so for € < 6 the failure of (2.1.4) follows from the deterministic estimate

N N 1 e Nt 1-0

N N0 N
[+ [Nl seve) > [T it mene > (26 > =27
i=1 i=N—N1-041

The proof that determinant concentration fails is somewhat involved, but mimics the proof of
the lower bound of Theorem 2.1.1. The idea is that the largest N1~ eigenvalues contribute a

N as above, and the rest of the eigenvalues behave as if semicircular (this is the

factor of size e
difficulty), so we get a lower bound for the determinant asymptotics that is order-one above what
the semicircle would predict. We now sketch how to prove this rigorously. Since X = Xy, we
simplify our notation and write fi = fig(x). Recall our eigenvalues are ordered A; < --- < An; we
decompose this measure as

1 N

S o

—N1-—
~ ~trunc ~r. tail Atrunc 1 Ar tail _
fi = T 4t == E Mis
N .
=1 i=N—N1-041

Notice that 4" has mass 1 — N~¢ and g % has mass N9 Compared to (2.2.2), the event
Ess 1s no longer necessary; the events g, and & remain the same (since they clearly imply the

analogues for i"™¢), and each still has probability 1 — o(1); the event Econc is replaced with

5(3(1;1:115 — {‘/log trunc _ E[ﬂtruncb‘ < t}.

This is a likely event, since

’/long Ar tail E[ﬂr tail])‘ < 210gn(K>lar tail(R) g N579 < (2313)
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(here it matters that 6 not be too small), and thus if ¢ < ¢

t
- Py < (| [ 1ogi (i~ Bl > 7 )

but the right-hand probability is o(1) by arguments as in the proof of Lemma 2.2.3. By mimicking
(2.2.6) but handling the large eigenvalues instead with (2.3.12), + log E[|det(Hy)|] is larger than
1— log 2 + iE[eNf(logH—log )dp “““C]l 1 —t+ [ 1o K 4k AtruHC]
Ng N ggap 5‘trunc g
= 1+ [ logl (VE[A™)(dN) — o(1).

where the last equality follows by mimicking Lemma 2.2.5. Now E[a™"¢] = E[p] — E[a" til],
and by (2.2.7) and arguments as in the proof of Lemma 2.2.2, we have flogf](()\)IE[ﬂ](d)\) >
J log|A|psc(dA) 4+ o(1). The term flogf](()\)E[ﬂr' tall] s handled as in (2.3.13). Overall, this gives
lim inf y_,o + log E[|det(Hp)[] = 1+ [log|A|psc(dA) which contradicts (2.1.8).

2.3.10.2 Necessity of spectral stability. With T as above, the eigenvalues of H are at most
N +T+/N deterministically; this implies (2.1.4) and (2.1.6). For (2.1.5), we note that on the event
{Xo = N}, the eigenvalues are at least N — TV N > 0, so there are clearly no eigenvalues near
zero; on the event {Xy = 0}, the matrix H is just a Wigner matrix, for which we proved (2.1.5)
above. Now we claim that assumption (E) holds with uy = ps.. Indeed, for test functions f with

| fllLip + || f]] e < 1 we have

2

|| [ @)t - pc)(do) ¥

]lXO:N} < 2P(Xp = N) =

and on the event 1x,—¢ we revert to the Wigner case studied above.
On the other hand, notice that (Xcyt)o is always zero, so on the event {Xy = N} the measure
L (Xo) 18 supported on [-Tv/N,T+/N] while flo(x) is supported on [N — TVN,N + TV/N].

For large enough IV these are disjoint, so the measures are one apart in KS distance, and thus
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P(dks(fio(x) Ao(Xew)) > N7F) 2 +, which shows that (S) fails.

Finally, since
Eldet(H)|] > Elldet(H)[1x,—n] > (N — TVN)VP(Xy = N),

we have % log E[|det(H)|] — +oo and determinant concentration fails.

2.4  VARIATIONAL PRINCIPLES AND LONG-RANGE CORRELATIONS

2.4.1 General scheme. In this section, we study expected determinants in the presence of

long-range matrix correlations. The prototypical example to keep in mind is
Hy =Wy +€1d,

where Wy is drawn from the Gaussian Orthogonal Ensemble (GOE), and & ~ N(0,1/N) is in-
dependent of Wy. Matrices of this style are very common in the landscape-complexity program,
but our main theorems do not apply directly because of the presence of long-range correlations
(here, along the diagonal of Hy). Nevertheless, there is still a general procedure to understand
the determinant asymptotics for such matrices, which we illustrate in the case of this example. We

first notice

1 u?
E[|det(H :7/ NIE[|det(Wy + u)]|] du.
[ldet(Hn)]] 5T e € [ldet(Wx + u)[] du
Our determinant asymptotics do apply to Wy + u, giving E[|det(Wx +u)|] = eN>®) for some
constants Y(u); then the Laplace method suggests
lim - log B{ldet(Hy)] = sup{ S(u) — (2.41)
im —lo e =su u) — — o. 4.
NOs N 8 N=se 2
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This method has appeared before in special cases, for example in [11] and [88]. In Section 2.4.2,
we prove results of this type without reference to any particular matrix model. In Section 2.4.3,

we prove extensions necessary to understand asymptolics of the form
li —1 E[]del(H )|]l ]
1m (0] .
N—oco N g N Hpy>0

In complexity computations, these “restricted determinants” correspond to counting just the local
minima among all critical points. The upshot is that this limit is also a variational problem as in

(2.4.1), but restricted to u in some good set instead of all Euclidean space.

2.4.2 Variational principles for unrestricted determinants. For applications to complex-
ity, we will need not just one matrix Hy, but a field of matrices Hy(u) for u € R™ (here m is

independent of N), with approximating measures uy(u).
Theorem 2.4.1. Assume the following:

- (Assumptions locally uniform in u) Each Hy(u) satisfies all the assumptions of Theorem
2.1.1, or all the assumptions of Theorem 2.1.2. In addition, all limits, powers, and rates in

these assumptions are uniform over compact sets of u.?

— (Limit measures) There exist probability measures pioo(u) such that

dpr(pun(u), proo(u)) < N°F if we are in the setting of Theorem 2.1.1, or

Wi(pun(uw), poo(u)) < N7°F if we are in the setting of Theorem 2.1.2

for k = k(u) > 0 that can, again, be chosen uniformly on compact sets of u. These measures

—14+k

also admit densities jioo(u,-) on [—k, K] that satisfy pieo(u, z) < k12| for all |z| < k.

- (Continuity and decay in u) For each N, the map u — Hy(u) is entrywise continuous.

3For example, writing (A;(u)).; for the eigenvalues of Hy (u), the condition (2.1.4) becomes: for every compact
m o1 N
K CR™, imy 00 SUP,cic logE[Hizl(l + ()15, (uyene )] =0.
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Furthermore, there exists C > 0 such that

E[|det(Hy ()] < (€ max(Jul, 1))". (24.2)

Then for any a > 0, any fixed p € N, and any ® C R™ with positive Lebesgue measure that is the

closure of its interior, we have

N—o0

lim — log / e~ AP Rl det( Hy (u))]] du = sup{ / og| Al tteo () (dN) —aHuH?}.
N D ued LR

Remark 2.4.2. A close inspection of the proof shows that the condition “® is the closure of its
interior” is only necessary for the lower bound in Theorem 2.4.1. For the upper bound, it suffices

to assume that © is simply closed (and has positive measure). We will use this below.

The proof of this theorem relies on the following two lemmas, in addition to determinant
concentration in the form of Theorem 2.1.1 or 2.1.2. We postpone their proofs until after the

proof of the theorem. Recall that Bp is the ball of radius R around zero in R™.

Lemma 2.4.3.

lim lim sup % log e*N"‘H“HQEHdet(HN(u))H du = —o0.

R—00 N_o00 B¢,

Lemma 2.4.4. The function

Salt] = [ 1oglA = (w)() = alful

is continuous, and 1im|j, |40 Sau] = —00.

Proof of Theorem 2.4.1. First we prove the upper bound. We apply Theorem 2.1.1 or 2.1.2 with the

reference measures fio(u). Since all inputs are uniform over compact sets of u, so is the conclusion;
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that is, for all R, we have

lim sup%log sup {IEHdet(HN(u))He_N J log'woowd”} <0

N—o0 uEBR

and a matching lower bound we will use momentarily. If R is large enough that |Bg N D| > 0, then

we conclude

1
lim sup — log e~ WHPalul®E | det(Hy (u))]] du
Nooo N BrM®
< lim sup = 10g/ e~ NallulP+N [ loglAluo(uA) dX 4,
Nooo N BrN®

< sup Sy [u] + lim sup
u€® N—oo

[log(lBR n Q)I}
N .
An application of Lemma 2.4.3 finishes the proof of the upper bound.

Now we prove the lower bound. Lemma 2.4.4 tells us that sup,cp Solu] is achieved at some
(possibly not unique) wug. Since S, is continuous, for every € > 0 there exists a bounded neigh-

borhood U. of ug on which Sy[u] > Syfup] —e. Since D is the closure of its interior, we have

U ND| > 0.

For each R, applying Theorem 2.1.1 or 2.1.2 with arguments as above yields

lim inf = log inf {E[[det(HN(u))He_N ) logp‘luw(u)(d)‘)} > 0.

N—oco NN u€BR

If R is so large that U. C Bp, then

1
lim inf — log [ e~ VPl Bl det(Hy (u))[] du
N—ooo N )

1
> liminf + 1og{6_paR2 [ e el E den(Hy ) du}
N—oo N U:ND

> lim inf = log Salul gy > hm mf — log/ N(Saluo]=¢) q,
N—oo N usmfg ﬂ@

. Jog([U: ND)
> — _—
> Souo] — e+ l}vnigéf ~
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Letting € — 0 completes the proof. O

Proof of Lemma 2.4.5. If wy, is the surface area of the unit ball in R, then from (2.4.2) we have

J,

which suffices by the Laplace method. O

e~ NalulPE|det (Hy (u))[] du < /

N (108(Cllul)=allul) gy — o, /°° N (log(Cr)—ar?) m—1 4.
B R

c c
R R

Proof of Lemma 2.4.4. Fix N. We assumed that Hy(u) is an entrywise continuous function of
u. Since the determinant is a continuous function of the matrix entries, dominated convergence
(with dominating function given by (2.4.2)) says that E[|det(Hxy(u))]|] is continuous in u, hence so
is & log E[|det(Hn(u))|]. Then Theorem 2.1.1 or 2.1.2 shows

lim sup %logE[\det(HN(u))H— /R 1og| Al oo (1) (AN)| = 0, (2.4.3)

N—o0 uEBR

and [p 10g|A|feo (1) (dA) is the locally uniform limit of continuous functions. Thus S,[u] is contin-
uous.

The decay at infinity follows from
1
/ log|A|pteo () (dA) < lim inf — log E[|det(H y(w))|] < log(C max(|jul], 1)),
R N—oo N

obtained by (2.4.3) and (2.4.2). O

2.4.83 Variational principles for restricted determinants. Let G C R™ be the set of “good”

u values

G={ueR™: too(u)((—00,0)) =0} = {u € R™: 1(uco(u)) > 0}. (2.4.4)
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For each € > 0, consider the following inner and outer approximations of G:

Gie = {u € R™ : 1(pioo(u)) > 2¢},
(2.4.5)

G .= {u eR™: Moo(u)«_oo? _5>) < 5}'

Theorem 2.4.5. Fiz some © C R™, and suppose that ® and the matrices Hy(u) satisfy the

following.
— All the assumptions of Theorem 2.4.1.

— (Superexponential concentration) For every R > 0 and every € > 0, we have

i Nlog N log usequR P(dBL(firy (u)s Hoo(u)) > €)| = —o00. (2.4.6)

~ (No outliers) For every R > 0 and every € > 0, we have

Jdim it B(Spec(Hav(u) € [iso(u)) — e x(mo() ) =1 (24.)

— (Topology) Each Gc is convex; ® is conver and closed; the set ©NG11 has positive Lebesgue

measure; and

DN (U g+6> =DNgG. (2.4.8)

e>0

Then for any a > 0 and any fized p € N, we have

1
lim — log / e~ WPl R |det (Hy (u)[L gy (u)50] = sup { / log!Aruoo<dA>—aHu\2}.
N—oo N D - uedng LJ/R

We prove the upper and lower bounds separately in the next two subsubsections.

2.4.3.1 Upper bound. The proof of the upper bound of Theorem 2.4.5 relies on the following

three lemmas, which we will prove after.
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Lemma 2.4.6. Fach G_. is closed, and G is closed.

Lemma 2.4.7. For every € > 0, we have

. 1 —Nallul|?
W %8 /(gg)c e~ Nl E |det (Hn (1)) 1 g1, (u)0] du = —o0.

Lemma 2.4.8. We have

lim sup Safu] < sup Syful.
0 uedng . ueDNG

Proof of the upper bound in Theorem 2.4.5. For each € > 0, Lemma 2.4.7 yields

1

N—oo

1
< limsup — log e~ Nolul’B[|det (Hy (u 1y, ()=o) du
N—oo @ﬂg75

1
< lim sup — log / e~ NellulP B[ det (Hy (u))[]du < sup  Salu].
N—o0 DNG_¢ uEDNG_¢

The last inequality holds by Theorem 2.4.1 applied to ® N G_., which is closed (by Lemma 2.4.6)
and has positive measure (as a superset of © NG, which has positive measure by assumption). By
Remark 2.4.2, these are the only conditions we need to check. Letting € tend to zero and applying

Lemma 2.4.8 completes the proof. O

Proof of Lemma 2.4.6. Since we assumed that u — Hy(u) is entrywise continuous and the spec-
trum is a continuous function of matrix entries, we have that u — fig (4 is almost surely continuous

with respect to the bounded-Lipschitz distance:

X . 13
dBL(Aby (u)s Py ) S 3 > min(2, [Ay(u) = \i(w))).
i=1

By dominated convergence, this means that u — E[fiz, (,)] is continuous with respect to dpr,. But
dBL(E[ft iy (u)]; Hoo(u)) — 0 uniformly on compact sets of u by assumption (here we use dpr, < W1

for the concentrated-input case), so we conclude that u — (1) is continuous with respect to dpp,,
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as well. Since dpy, metrizes weak convergence, and since the defining properties of G and G_. can
be stated in terms of distribution functions of p(u), which are continuous since each (1) has

a density with respect to Lebesgue, the lemma follows. O

Proof of Lemma 2.4.7. From Lemma 2.4.3, it suffices to show

1 2
lim 710 / e—NOLHUH E det H " 1 . du C
N (G_c)°NBg [|det(Hn (w) L gy (uy=0]

N—oo

for each R > 0. If Hy(u) > 0 and u € (G_.)¢ then by taking some %—Lipschitz fe satisfying

Toco = fo(2) = §lac_c we obtain dpp (i (), fioo(w)) = Spco(u)((—00, —€)) = & . For small

d > 0, this gives

/ e NP R det(Hy ()11, (u)50] du
(G—¢)°NBRr

2 1446
<\BR\<sup El|det(H <>>|1+5]1+6>(sup P<dBL<ﬂHN<u>vﬂoo<“>>>€2>> |

u€BR uEBR

This suffices by (2.1.6) and (2.4.6). O

Proof of Lemma 2.4.8. From their definitions, we have 1,5 G- = G. We take the intersection of

both sides with ®. Next, we claim that there exists some R > 0 such that

sup Sylul = max  Sglu] and su Salu max S.lu 2.4.9
uesalrng ] u€(DNGNBR) [ ue@ﬂ%_g ] = u€(®NG_NBR) [ ( )

for every € > 0. Indeed, the proof of Lemma 2.4.4 shows that
Salu] < log(Cllull) — allull?

on R™. Since S, is continuous and ® N G is closed by Lemma 2.4.6, let u, € © N G satisfy
Supyenng S[u] = S[u.], and let R > 1 be so large that log(CR) — aR? < S [u].

For each e, since ® N G_. is closed (again by Lemma 2.4.6), let u. be such that Sy[ue] =
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SUPyeong. . Salu]. Then ue € Bp; otherwise, we would have

max  Sylu] = Safue] < log(CR) — aR? < Syfus] = max Su[u] < max  Salu].
ueDNG_¢ ueEDNG u€EDNG_.

This verifies (2.4.9).

Since the {u.} lie in a compact set, they have a limit point ug up to extraction. Furthermore,
up € ONG = N(DNG_;). Indeed, otherwise a neighborhood of uy would be contained in (DNG_¢, )¢
for some £1, hence in (D NG_.)¢ for every € < €1 (since the sets are nested). But then ug could not
be a limit point of {u.}.

Thus by continuity of S, we have

lim sup Syfu] =lim S, fue] = Safuo] < sup Saful.
0 uedng . el0 u€DNG

2.4.3.2 Lower bound. The proof of the lower bound in Theorem 2.4.5 relies on the following

two lemmas, which we will prove after.

Lemma 2.4.9. For each u € R™ and each §,e > 0, define the set of probability measures

M(u, 8,2) = {1+ d, (1 oo () < & and supp() C [L{jioo (1)) — &, 7 (too (1)) + €]}

that are close to poo(u) both in dpr, and in support. For all R, all §, and all ¢ sufficiently small
depending on R, we have

26
_

inf ( nf / log| A (d\) — / log|/\|uoo(u)(d)\)> >

weDNGLNBr \HEM (u,d,e
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Lemma 2.4.10. Fach G4, is closed, and for all R large enough we have

sup Syfu] = max  S,fu] and sup  Syplul=  max  Syfu (2.4.10)
ueEDNG u€DNGNBR wEDNG wEDNG+:NBR

for every 0 < e < 1. Furthermore,

lim sup Sylul = sup Saylul. (2.4.11)
el0 yedng, . uEDNG

Proof of the lower bound in Theorem 2.4.5. Since

IP>(:aHN(u) g M(uv 67 5))

< P(Spec(Hy(u)) & [1(ptoo (1)) — &, 7 (ptoo(u)) + €]) + P(ABL (At (u) oo (1)) > 0),

(2.4.7) and (2.4.6) tell us that

1
lim —lo inf P(figy () € M(u,d,e)) | =0. 2.4.12
Jim g<uew+m () € M( >>) (2.4.12)

Let R satisfy Lemma 2.4.10, and additionally be so large that "D Ng+1N Bigl >0 Ife<1is

sufficiently small depending on R, then by Lemma 2.4.9 we have

/33e—(N+p)Oé||u||2E[|det(HN(U))|]1HN(u)20] du

> e—paR2/ 76—N0¢Hu||2 exp| N  inf /log’/\‘u(d)\) P(fry ) € M(u,d,¢)) du
DNG+eNBR wEM (u,d,e)

2N§

> epaR2< inf _ P(fpgyw € M(u,d, 8))) exp (—) /  NSalul gy,
u€®NG4.NBR £ DNG4+:NBRr

Now we take the logarithm of both sides, divide by N, let N — oo, and then let § | 0. The set
DNG,.NDBpg is closed and convex, as the finite intersection of such sets. Since closed convex sets in
Euclidean space have empty interior if and only if they lie in a lower-dimensional affine space, we

conclude that ® NG, . N Bpr has nonempty interior from the fact that it has positive measure. Since
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a closed convex set with nonempty interior is the closure of its interior, we can apply Theorem 2.4.1

to this set. From this theorem and from (2.4.12), we have

liminf | e VPR | det(Hy (u)| Ly w0l du >  sup  Saful= sup  Salul-
N—oo Jp w€DNG-NBR uEDNG4e
By (2.4.11), this suffices. O

Proof of Lemma 2.4.9. Consider the function f,, defined on [1(pao(u)) — &, r(poo(w)) +€] by fu(N) =
log|A|l. If u € ® N G4 N Bpg, then

(LI )

[ fullip + [ fullLoe < é + max{|log(e)], [log(r(poo(u)) + €|} <

where the last inequality holds for € sufficiently small, uniformly over u € Bg, since supp(peo(u)) is

compactly supported uniformly over v € Bg. This implies that whenever p € M (u,d, ), we have

|[ log|-|dpe — [ log|-|dpec (u, )| < 2dpL(p, poo(u)) < 2. -

Proof of Lemma 2.4.10. The proof of Lemma 2.4.6 shows that the map u — poo(u) is continuous
with respect to weak convergence; thus each G, . is closed.

The proof of Lemma 2.4.4 shows that S,[u] < log(Cllul|) — /][> on R™ and that S, is
continuous. Since ® N G is closed by Lemma 2.4.6, and each ® N G is closed by the argument
above, we can write sup,cpng Salu] = Safus] for some u. and sup,cpng, . Salu] = Salue] for some
Ue.

Let R > 1 be so large that log(CR) — aR? < S,[u1]. Then u. € By for each ¢ < 1; else we

would have
max  Sy[u] = Safue] < log(CR) — aR? < Syfui] = max Sufu] < max  S,lul.

uEDNG ¢ uEDNG 41 uEDNG ¢

This verifies (2.4.10).
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For each € > 0, let

Solu] ifueD®ngG,., Salu] ifu € DN (Ues0G4e),
fre(u) = fro(u) = Sulg fre(u) =
—oo  otherwise, = —oo  otherwise.

Since the G, .’s are nested and S, is continuous, we have

lim sup Safu] =sup sup Sylu] =sup sup fic(u) = sup sup fi(u) = sup fio(u)

el0 yednG, . >0 ueDNGe e>0 ucR™ u€R™ >0 u€R™
= sup Sa [u] = Sup Sa [’LL] = sup Sa [u]v
u€DN(Ue»0G+¢) wEDN(Ue>0G12) uedNG

where the last equality follows from (2.4.8).
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Chapter 3

Landscape complexity beyond

invariance and the elastic manifold

This chapter is essentially borrowed from [36], joint with Gérard Ben Arous

and Paul Bourgade, which will appear on the arXiv soon.

3.1 INTRODUCTION

3.1.1 Complexity of the landscape of disordered elastic systems. The elastic manifold
is a paradigmatic representative of the class of disordered elastic systems. These are surfaces
with rugged shapes resulting from a competition between random spatial impurities (preferring
disordered configurations), on the one hand, and elastic self-interactions (preferring ordered con-
figurations), on the other. The model is defined through its Hamiltonian (3.2.2); for example, a
one-dimensional such surface is a polymer; a d-dimensional such surface could describe the interface
between ordered phases with opposite signs in a (d + 1)-dimensional Ising model. Among other
motivations, the elastic manifold is interesting because it displays a (de)pinning phase transition,
which is a certain nonlinear response to a driving force: if one applies an external force to the

surface at zero-temperature equilibrium, then the surface moves if and only if the force is above
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the depinning threshold. The elastic manifold also has a long history as a testing ground for new
approaches, for example for fixed d by Fisher using functional renormalization group methods [80],
and in the high-dimensional limit by Mézard and Parisi using the replica method [122].

In the same diverging dimension regime, we study the energy landscape of this model, through
the expected number of configurations that locally minimize the Hamiltonian against small pertur-
bations. We also count the expected number of critical configurations. Our main result, Theorem
3.2.4, gives the phase diagram in the model parameters, and identifies the boundary between sim-
ple and glassy phases as a physical parameter known as the Larkin mass, which appears in the
(de)pinning theory, confirming recent formulas by Fyodorov and Le Doussal [88].

The proof proceeds by dimension reduction and naturally leads to analyzing a generalization of

the zero-dimensional elastic manifold. The original zero-dimensional elastic manifold is
— For2
Hn(z) = V(@) + S llzll, (3.1.1)

where Vi : RV — R is an isotropic Gaussian field and g > 0. This has been studied by Fyodorov as
a toy model of a disordered system; it admits a continuous phase transition between order for large
1 and disorder for small p [84]. We replace the parabolic well confinement & ||z||? with any positive
definite quadratic form %(w, Dyx), to see how different signal strengths in different directions affect
the complexity; this defines the model of soft spins in an anisotropic well. Theorem 3.2.8 identifies
a simple scalar parameter distinguishing between positive and zero complexity in high dimension,
namely the negative second moment of the limiting empirical measure of Dy. We also find that the
near-critical decay of complexity is described by universal exponents: quadratic for total critical
points, and cubic for minima.

Our work is part of the landscape complexity research program, which was initially developed
for a variety of functions which are invariant under large classes of isometries (see Section 3.1.3).
We address landscapes lacking this property, which we call “non-invariant.” The elastic manifold

model is a proof of concept for our general approach, which relies on the Kac-Rice formula to reduce
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complexity to the calculation of the determinant of random matrices, and on our companion paper
[35] for such determinant asymptotics for random matrix ensembles which are not invariant under
orthogonal conjugacy. This gives variational formulas for the annealed complexity such as Theorem
3.4.1 for the elastic manifold.

Such variational problems associated to high dimensional Gaussian fields are not solvable in
general (see e.g. the companion paper [120] about bipartite spherical spin glasses). However, for
the elastic manifold, a key convexity property inherited from the associated Matrix Dyson Equation
(see Proposition 3.4.9) reduces the dimension of the relevant variational formula, mapping the
problem to the complexity of the soft spins in an anisotropic well model for a specific Dy. We then
find integrable dynamics to analyze the variational problems associated to the general soft spins in

an anisotropic well model, and obtain the complexity thresholds mentioned above.

3.1.2 Determinants and the Kac-Rice formula. As mentioned in the previous section, the
Kac-Rice formula provides a bridge between random geometry and random matrix theory. If f is
a Gaussian field with enough regularity on a nice compact manifold M, and if Crts(¢, k) denotes

the number of critical points of f of index k at which f < ¢, then this formula reads

E[Crt s (t, k)] = /M EHdet(VQf(a)]1{f(a) <ti(VEf(0)) = k}]w(a) = 0] ¢5(0) o

Here i(-) is the index and ¢,(0) is the density of Vf(o) at 0. In the models of this paper, we
will always take M to be the whole Euclidean space (with the necessary arguments to account
for non-compactness). Thus the Kac-Rice formula transforms questions about critical points into
questions about the (conditional) determinant of the random matrix V2f (o). For an introduction
to the Kac-Rice formula, we direct the reader to [2, 17]. In a digestible special case, if Crty is the

total number of critical points of f, then

E[Crt;] = /M E[[det(v2(0)||V £(o) = 0] 65 (0) do (3.1.2)
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In one dimension, this formula dates back to the 1940s [107, 133]. For many years it was used for
small, fixed dimension in applications such as signal processing [134] and oceanography [117]. For

more modern results in fixed dimension, we refer the reader to [16].

3.1.3 Rotationally invariant models. In a breakthrough insight, [84] used the Kac-Rice for-
mula in diverging dimension, to study asymptotic counts of critical points via asymptotics of random
determinants. For example, if f = fy in the above discussion is defined on an N-dimensional man-
ifold, one attempts to compute limy_, + log E[Crty,]. The papers [84] and [94] studied isotropic
Gaussian fields in radially symmetric confining potentials; the centered isotropic case without con-
fining potentials (but in finite volume) was treated in [62]. Work has been done in the mathematics
and physics literature on complexity for spherical p-spin models, starting with [10] (for pure mod-
els) and [9] (for mixtures). Similar techniques were used to understand the spiked-tensor model in
[43]. Intricate questions, such as the number of critical points with fixed index at given overlap
from a minimum, are considered for pure p-spin models in [135]. We also mention [78] for an up-
per bound on the number of critical points of the TAP free energy of the Sherrington-Kirkpatrick
model, and the recent works [29, 30] on neural networks, [13] on Gaussian fields with isotropic
increments, [38] on stable/unstable equilibria in systems of non-linear differential equations, and
[34] on mixed spherical spin glasses with a deterministic external field. In most of these models, the
conditioned Hessian is closely related to the Gaussian Orthogonal Ensemble (GOE), a consequence
of distributional symmetries of the landscapes.

The above results handle the average number of critical points. It is another question entirely
to prove concentration, i.e. to show that the average (annealed) number of points is also typical
(quenched). Proving concentration typically involves intricate second-moment computations, which
are also possible via the Kac-Rice formula, but which involve determinant asymptotics for a pair
of (usually correlated) random matrices. To our knowledge this has only been carried out for p-
spin models, both for pure models [141, 12] and for certain mixtures which are close to pure [44].

The quenched asymptotics are not always expected to match the annealed ones; for more intricate
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questions in pure p-spin, physical computations based on the replica trick suggest a qualitative

picture of this failure [136, 137].

3.1.4 Non-invariant models. In many models of interest, it happens that the law of the
conditioned Hessian in (3.1.2) does not depend on o, and that it has long-range correlations induced
by a fixed (not depending on N) number m of independent Gaussian random variables. For example,
this law might match that of Wy + £ 1d, where Wiy is symmetric with independent Gaussian entries
with a variance profile or large zero blocks, and & ~ N (0, %) is independent of Wy ; the resulting
matrix has “long-range correlations” because the diagonal entries are all correlated with each other,
and m = 1 because these correlations are induced by ¢ € R'. In these models, by integrating over

this small number of variables last, the difficult term in the Kac-Rice formula (3.1.2) takes the form

2
[l ll

/m e NS B | det (Hy (u))|] du (3.1.3)

for some Gaussian random matrices Hy(u) which may be far from GOE. (In the example above,
Hy(u) =Wy +uld.)

The problem then reduces to the exponential asymptotics of (3.1.3). In the companion paper
[35], we establish two types of results about (3.1.3). First, we show asymptotics for a single matrix

of the form

E[|det(Hx ()] = exp(N /R log| Ay (11, d\) +0(N)>. (3.1.4)

Here the deterministic probability measures puy(u) = pn(u,-) come from the theory of the Matriz
Dyson Equation (MDE), developed in the random-matrix literature by Erdés and co-authors in the
last several years. Second, after this identification, (3.1.3) looks like a Laplace-type integral (with
error terms), but the measures yx depend on N, meaning (3.1.3) may take the form [g,, eV¥(®) dy
instead of the more-desirable [, eN/(" du. In [35], we show that — assuming the limits puy(u) —
loo(u) exist — the Laplace method can be carried out on (3.1.3).

In this paper we discuss how to identify the limits py(u) — poo(u) for the elastic manifold
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and soft spins in an anisotropic well (a third model is treated in the companion paper [120]). This
is model-dependent, although we identify some common techniques. This leads to the following

informal statement:

Metatheorem 3.1.1. Let My be a nice sequence of N -dimensional manifolds, and let fn : My —
R be a sequence of Gaussian random landscapes with the properties discussed above (namely, the
law of the conditioned Hessian is independent of the basepoint on My, and long-range correlations
are induced by m independent variables). If the limiting empirical measures pioo(u) can be identified

and some regularity established in u (and we present models where this is possible), then

1 2
lim —E[Crty, | = sup {/ log| Al oo (u, dX) — HUH} + simpler non-variational term. (3.1.5)
N—oo N ueR™ | JR 2

The non-variational term comes from the density of the gradient in the Kac-Rice formula: precisely,

it is equal to limpy_, oo % log fMN ¢ (0)do, which is typically easy to calculate.

We also wish to count local minima, for which the analogue of (3.1.3) is

_ oyl
/@e N5 EHdet(HN(u))’lHN(u)}O]du'

If we define the set

G ={ueR™: poo(u)((—00,0)) = 0}

of good wu values for which {Hy(u) > 0} is a likely event, then the upshot is that at exponential

scale we have

E[|Hn(u)|] ifueg,
E[[Hn (u)[1 5y (u)=0] = (3.1.6)

0 otherwise.
(All the matrices Hy(u) we encounter have asymptotically no outliers; otherwise, large-deviations
estimates for edge eigenvalues would impact the final result.) This gives an analogue of Metatheorem
3.1.1 for the complexity of local minima, where the variational problem is restricted to a supremum

over u € G instead of u € R™. Again, the argument was presented in [35] assuming the existence
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of limits pn(u) — poo(w); in this paper we verify this assumption.

The goal of this paper is to carry out this program for the elastic manifold and the anisotropic
soft spins model, yielding precise versions of Metatheorem 3.1.1 and its analogue for minima. In
fact, for these particular models the variational problem in (3.1.5) turns out to be integrable,
as mentioned at the end of Section 3.1.1: By introducing a dynamic version of the optimization
(3.1.5), we can distinguish regimes of positive and zero complexity. In addition, we can study near-
critical behavior at this phase transition, showing that complexity of total critical points tends
to zero quadratically, whereas complexity of local minima tends to zero cubically. These critical
exponents were already known for certain models [84, 94]; we show their universality by extending
substantially the class of models exhibiting these quadratic and cubic transitions.

We state our main results in Section 3.2. Section 3.3 provides techniques that will be shared
across models, showing how the (well-established) stability theory of the MDE allows one to replace
un(u) by poo(u) as discussed above, if one has a candidate po. In the remaining sections, we
propose candidates for i and carry out this program for each of our models in turn. In Appendix
B, we prove a result in free probability necessary to identify near-critical complexity of our models,
and possibly of independent interest: The free convolution of any (compactly supported) measure

with the semicircle law decays at least as quickly as a square root at its extremal edges.

Notations. We write || - || for the operator norm on elements of CV*¥ induced by Euclidean
distance on CV, and if S : CV*N — CVN*N | we write ||S|| for the operator norm induced by || - ||.

We let
f(x)—f(y)‘
r—y

[fllLip = sup
Y

for test functions f : R — R, and write d for the bounded-Lipschitz distance on probability measures

on R:
() =supf | [ Fa(u=v)

N i+ 1F o < 1}.
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We will need the semicircle law of variance ¢, which we write as

VAt — 22

psc,t(dx) = T lxe[ 2v/t,2V/1] de,

as well as the abbreviation psc = psc,1 for the usual semicircle law supported in [—2,2]. We write
1(pu) for the left edge (respectively, r(u) for the right edge) of a compactly supported measure pu.
For an N x N Hermitian matrix M, we write Apin (M) = A\ (M) < -+ < AN(M) = Apax (M) for
its eigenvalues and

N

= o
for its empirical measure. We write ® for the entrywise (i.e., Hadamard) product of matrices, and
B for the free (additive) convolution of probability measures. Given a matrix T', we write diag(7T’)
for the diagonal matrix of the same size obtained by setting all off-diagonal entries to zero. In
equations, we sometimes identify diagonal matrices with vectors of the same size. We write Bg
for the ball of radius R about zero in the relevant Euclidean space. We use ()7 for the matrix
transpose, which should be distinguished both from (-)* for the matrix conjugate transpose, and
from Tr(-) for the matrix trace.

Unless stated otherwise, z will always be a complex number in the upper half-plane H = {z €

C : Im(z) > 0}, and we always write its real and imaginary parts as z = E + in.
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sions about the MDE for block random matrices, in particular for communicating arguments that
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thanks Krishnan Mody for helpful discussions. GBA acknowledges support by the Simons Foun-
dation collaboration Cracking the Glass Problem, PB was supported by NSF grant DMS-1812114

and a Poincaré chair, and BM was supported by NSF grant DMS-1812114.
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3.2 MAIN RESULTS

3.2.1 Elastic manifold. Fix positive integers L (“length”) and d (“internal dimension”), posi-
tive numbers p (“mass”) and ¢, (“interaction strength”), and write Q for the lattice [1, L]¢ c Z4,
understood periodically. Let Vi be a centered Gaussian field on RY x Q with

_ 2
[V (1, 21)Vic 2, )] = NB(W)&

for some function B : Ry — R called the correlator. Schoenberg characterized all possible such

correlators [139, Theorem 2] (see also [156]); B must have the representation
oo
B(z) =g +/ exp(—t*z)v(dt) (3.2.1)
0

for some ¢y > 0 and some finite non-negative measure v on (0,00). In particular B is infinitely dif-
ferentiable and non-increasing on (0, c0). We assume that B is also four times differentiable at zero,
which implies via Kolmogorov’s criterion that each Vy(-,x) is almost surely twice differentiable.
We will also assume

0<[BD0)  fori=0,1,2,

which should be interpreted as a non-degeneracy condition on the field (i = 0), its gradient (i = 1),
and its Hessian (i = 2). This is a very mild assumption; indeed it holds by dominated convergence
as soon as the measure v in (3.2.1) has a finite fourth moment and is not the zero measure.

To each deterministic function u : @ — RY (“point configuration,” but sometimes “manifold”

after the continuous analogue) associate the random Hamiltonian

Hul = Y (uold —toA)yy(u(z),u(y)) + > Vi (u(z),z). (3.2.2)

zvyEQ €N

Here A € RE“L? ig the (periodic) lattice Laplacian on €, so the (z,y) entry of ugId —tgA is given
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(/LO Id _tOA)zy = /'LOCSa::y - tO(axNy - 2d6m=y)a

where x ~ y means that z and y are lattice neighbors. (Following [88], our Laplacian is a negative
sign off from the typical mathematical convention.)

Notice that the different energies compete: If the disorder Vi vanished in (3.2.2), then since
o Id and —tpA are both positive semidefinite, the ground-state configuration would be the flat one
u = 0. On the other hand, the disorder Vj prefers certain random configurations; the interaction
—toA prefers to keep these configurations from becoming too jagged; and the confinement pq prefers

to keep them close to the origin. See Figure 1.2 for a graphical interpretation.

History. Hamiltonians of this flavor have been used to model a wide variety of problems featuring
surfaces with self-interactions in disordered media. For example, when d = 1, the model is a
polymer, related to the KPZ universality class; when N = d + 1, the model is an interface, such
as that between regions of opposite magnetization in a ferromagnet. We direct readers to [95]
and [96] for a review of disordered elastic media in general and to [89] for a review of this specific
Hamiltonian, which we summarize briefly here.

Two phenomena are of primary interest: the depinning threshold f. and the wandering (or
roughness) exponent . The former refers to the manifold’s nonlinear response to an applied force
f, a consequence of the impurities in the potential V: at zero temperature, it moves from its
preferred position only if the force is above the depinning threshold f > f. = f.(L,d, ty,N),
whereas if f < f. it does not move at all and is said to be pinned. (Depinning is typically discussed
in the massless limit pg J 0, but restricting the manifold points to lie in a finite box. At positive
temperature, the manifold can move when f < f., but the movement is typically slow and is called
creep; the movement above f. is faster.) Depinning is related to complexity: Adding a force changes
the Hamiltonian, and the landscape is supposed to simplify as f increases; then f. can be defined

as the smallest f for which the resulting (quenched) complexity vanishes. We do not study this
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connection further, but refer readers to a discussion in [88].

The wandering exponent ¢, which depends on d and N, is defined by

E[(uo(x) —ug(y))?] ~ l|lz — y[|*

where ug is the ground state. It is generally believed that ¢ = 0, i.e. that the manifold is flat, for d >
4. Larkin proposed a simplification of the Hamiltonian (3.2.2), replacing the terms Viy(u(x), z) with
their linearizations Vi (0, z) + 9y Vn (0, x)|y—ou(x). This so-called Larkin model is solvable and gives
(= (%)Jr; note also that the Larkin model is quadratic in u, hence only has one local minimum,
i.e., is necessarily zero-complexity. Physicists believe that the Larkin model is a good approximation
for the elastic manifold when L is below the Larkin length L., with L, ~ (B”(0))~Y/(*=4) for weak
disorder. Above the Larkin length the approximation is supposed to break down, and describing the
physics of the elastic manifold (in particular finding () is more challenging. This regime inspired
early technical developments of Fisher in functional renormalization group methods [80] and of
Mézard and Parisi in the replica method [122]; the latter paper suggested that the system exhibits
zero-temperature replica symmetry breaking for small po in the N — 400 limit. (This is the same
limit we will consider, although of course one is ultimately interested in finite- N results.) Increasing
the “mass” pg has the effect of simplifying the landscape, and for pg larger than a Larkin mass
e (related to the Larkin length L.), the system is believed to be replica symmetric. In fact the
Larkin mass is central to our results; we are making rigorous a result of Fyodorov and Le Doussal
suggesting that, for all other parameters fixed, . is precisely the boundary between zero complexity
(for po = 24/B”(0)p.) and positive complexity (for po < 21/B”(0)uc). The same p,. serves as the
boundary both for total critical points and for local minima.

There are some previous complexity results for special cases. When d = 0, the system is
interpreted by convention as being a single point, i.e., it reduces to the Hamiltonian (3.1.1). Fy-
odorov computed the complexity of (3.1.1) and found a continuous phase transition in p: For

W = [, the annealed complexity (of the total number of critical points) is zero and the land-
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scape is “simple,” but for p < p. the annealed complexity is positive and the landscape is “com-
plex” or “glassy” [84]. Later, Fyodorov and Williams showed that this phase transition matches
that of replica-symmetry/replica-symmetry-breaking at zero temperature [94], interpreting replica-
symmetry-breaking as “a replica-symmetric computation of the free energy becomes unstable in
the zero-temperature limit.” For more discussion of the d = 0 case, see Section 3.2.2 below. When
d = 1, the model is an elastic line, with complexity studied in the case of N =1 and L — 400 in

[90].

Results. Let Nio; be the random number of stationary points of the Hamiltonian, i.e., of functions
u: Q — RY such that Ou,(yH[u] = 0 for every 2 € Q and every i = 1,...,N. Let N be the

number of local minima.

Definition 3.2.1. For any po,to,b > 0, define
Z(MO) to, b) = Z(M()? to, b7 L7 d)
1 . u?
= ——— log(det(po Idpay o —toA)) + sup / log| A — u|(pscp B fi—tgAtpuo1d)(A) dX — — 5,
L ueR | /R 2b
Zst(u()atO)b) - ESt(,U’O7t07b7L7d) (323)

1
= _ﬁ log(det(,uo IdeXLd —toA))

R u?
+ sup ){/R log| A — u|(psep B fi—tgAtpo1d)(A) dX — }

ugl(psc,bEEﬂftOAJr,uo Id 2b
Theorem 3.2.2. We have

. 1
Jim = 10g B[Niot] = (10, 0, 4B"(0)),

1
N—o0 NLd

(3.2.4)

log E[Nst] = st (10, to, 4B"(0)).

Definition 3.2.3. For any to,b > 0, let the Larkin mass p. = pc(to, b, L, d) be the unique positive
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solution to

/Rﬂ—toA(d)‘) _ 1 (3.2'5)

(pe + )\)2 T

It will also be useful to define, for any ug,to > 0, the critical noise parameter

i d )\~
be = be(pos to, L, d) = ( MtoA())

R (o + )2

For uop < pe(to, b, L,d), we write ¢ = ¢(uo, to, b, L, d) for the unique positive value satisfying

/ la—toA(d)\) — 1
R (o +A)?2+b% b

and use this to define

A
v = v(uo, to, b, L,d) = —b / MO AN

r (1o + A)? +b2

Finally, we need the positive numbers

(dX) A_tya(dN)
f j tOA f H—toaldA)
( R (no+))? ) Cmin(NOat(]aLad) ( R (po+A)? )

Ctot (1o, to, L, d) = oy
tgA f—toa(d)
(fR u0+/\)4) 24(f1R “giA—) )

Theorem 3.2.4. For each ty and B"(0), the Larkin mass p. separates the phases of positive
and zero complezity, both for total critical points (whose complexity exhibits quadratic near-critical
behavior) and for local minima (whose complexity exhibits cubic near-critical behavior).

More precisely, the complexity functions satisfy the following, where b = 4B"(0):

(Z) Zf Ho P> Nc(t()ab:Lad)) then Z(M07t0>b) = Est(,u()atmb) = 0;.
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(ii) if po < pe(to, b, L, d), then X(uo,to, b) > st (1o, to,b) > 0, and these are given by

'U2

1 N
E(,UJQ, to, b) = —ﬁ log(det(uo Id *toA)) + /Rlog|)\ — v‘(psc,b 28] ,U,,tOA+‘u0 Id)()\)(d)‘) — ?b,

1 . 72
Yt (1o, to, b) = ~d log(det(po Id —tpA)) + /RlOgP\ — ) (psep B fi_tgatpo1a) (M) (dA) — %

where £ = 1(pgep B fi_tyatpo1d) and v is as above; and

(iii) for fixed po and to, and supercritical b, we have

Z3(,“07 to, b) = Ctot(:u(]’ to, La d) ’ (b - bc)2 + O((b - bc)3)7

Zst(HOa to, b) = Cmin(NOa to, L, d) : (b - bc)3 + O((b - bc)4)-

For the proof of this theorem, we use determinant asymptotics from our companion paper
[35] to give the complexity as a variational problem over RLY Using a remarkable MDE-induced
convexity property, we reduce this to a variational problem over R, namely (3.2.3). We analyze
this one-dimensional variational problem with a dynamic approach, varying B”(0) for fixed po and
to.

We remark that Fyodorov and Le Doussal also exhibited a quadratic/cubic near-critical behavior

for this model but in a different scaling, varying pg for fixed B”(0) and ¢y [88].

3.2.2 Soft spins in an anisotropic well. We consider the random Hamiltonian Hy : RN — R
given by
(x, Dyx)

Hy(x) = — + Vn(z),

where Dy is a real symmetric matrix satisfying conditions below, and where Vj is an isotropic

centered Gaussian field with covariance

E[Vn(z1)VN(z2)] = NB (W)
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with B : Ry — Ry a correlator function (meaning it has the representation (3.2.1)). As in Section
3.2.1, we assume that B is four times differentiable at zero to ensure twice-differentiability of the
field, and we assume

0<|BW)  fori=0,1,2,

for nondegeneracy of the field and its first two derivatives.
We suppose that (Dn)R_; is a sequence of real symmetric matrices, Dy € RN*N “and that

there exists some compactly supported measure up such that, for some £ > 0, we have

dpL(fipy, D) < N°° (3.2.6)
and the eigenvalues are uniformly gapped away from zero and from infinity, in that

o | =

€< 11]\1]f>\m1n(DN) < sup )\max(DN) <
N

Although our results are for the N — +oo limit, Figure 1.3 displays how changing Dy can

qualitatively change the count of critical points when N = 2.

History. Models of the form Vy(z) + 4[|z||? (recall (3.1.1)), with various choices of randomness,
have been considered in a wide variety of contexts. There are nice overviews of the literature in
[84, 94, 13]. In the early 1990s, the model was studied by Mézard-Parisi [123] and by Engel [73]
as a zero-dimensional case of the elastic manifold. The complexity was computed by Fyodorov [84]
for total critical points and Fyodorov-Williams [94] for minima, finding a phase transition between
positive and zero complexity at an explicit pu.. Fyodorov and Nadal found that the complexity of
minima for p near ., scaled appropriately, tends to a limiting shape related to the Tracy-Widom
distribution [91].

There is also a long history of generalizing the model, as we do: Fyodorov and Williams actu-

ally studied the complexity after replacing the quadratic confinement 4||z||? with a general radial
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confinement NU (%) for some function U : R — R which is increasing and convex [94]. In some

sense our extension is orthogonal to theirs: they let the confinement be non-quadratic, whereas we
let it be non-radial. As another generalization, if Vx(z) is not isotropic but merely has isotropic
increments (meaning E[(Vy(x) — Viv(y))?] depends only ||z — y||), then the model can admit long-
range correlations; this was studied in the physics literature by Fyodorov and co-authors [92, 85],
and its complexity was recently computed by Auffinger and Zeng [13].

Our generalization is reminiscent of the work of Fan, Mei, and Montanari on an upper bound
for the complexity of the TAP free energy of the Sherrington-Kirkpatrick model [78]. Indeed, via
the Kac-Rice formula, the random matrix that appears in our problem is a full-rank deformation
of GOE (see (3.5.3)). A similar random matrix, in fact with an additional low-rank deformation,

appears in [78].

Results. Let Crt'*(H ) be the total number of critical points of Hy and Crt%" () be the total

number of local minima.

Definition 3.2.5. For any t > 0 and any pp compactly supported in (0,00), define

2

u
SO () = —/Rlog()\)up(d/\) + Sg%{/Rlng\ — u|(pset B pup)(A) dA — Zt}’ (3.2.7)

02
S (p ) = —/Rlog()\),up(d/\) + sup {/Rlog\)\ — u|(psct B p)(AN) dX — 2t} (3.2.8)

u<L(pse,:Bpp)
We will show that these suprema are achieved, possibly not uniquely.

Theorem 3.2.6 below shows the relevance of these functions for complexity, and Theorem 3.2.8
analyzes the variational problems from (3.2.7) and (3.2.8) to describe the phase portrait in up and
t. In particular, the regimes of positive complexity for the total number of critical points and local

minima coincide for any up, and the exponents describing near-critical behavior are universal in

UD-
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Theorem 3.2.6. We have
1
lim — log E[Crt{{" (Hn)] = X (up, B"(0)).
N—oo N
If in addition Dy has no external outliers, in the sense that

lim Apin (Dn) = 1(up) and lim Apax (Dn) = r(pp),

N—oo N—o0

then

1 . .
lim sup N log E[Crt ™ (Hn)] = ™" (up, B"(0)).

N—00
Remark 3.2.7. We emphasize that Theorem 3.2.6 shows that special directions in the environment
(meaning outliers in Dy ) have no effect on the total number of critical points at exponential scale,

as long as there are o(IN) many of them. We leave open the effect of special directions on minima.

We define the important threshold

et = [ 220 02

For t > t., we write ¢ = ¢(t, up) for the unique positive value satisfying

1 1
t /R 2o M)
and use this to define

A
= u(t =t ) —-— d\).
v U( HU'D) /]RAQ +t20(t,uD) :U’D( )

We also need the positive numbers

(Ji o)’

pp(d))°
Ctot(MD)_ZW’ Cmin(uD): <IR 22 )

W. (3-2.10)
24( fi 25N
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Theorem 3.2.8. For everyt > 0 and every probability measure pup compactly supported in (0, 00),
(i) if t < te, then 3 (up,t) = Z™"(up,t) = 0;

(ii) if t > t., then X (up,t) > L™ (up,t) > 0, and these are given by

. 52
Emm(ﬂD7t) = _/Rlog()\)MD(d)\) + /Rlog\)\ - ﬁ\(psc,t H ,UJD)()\) d\ — ﬂ’ (3211)
2
S (i 1) = — /R log(\)un(dA) + /]R log]A = vl(pses Bup) A= . (3:2.12)

where £ = 1(pser B up) and v is as above; and

(7ii) for supercritical t, we have

S (up, t) = crov(kp) - (¢~ te)® + O((t — te)°),

Emin(ﬂDu t) = cmin(pp) - (t — t6)3 +O((t — t0)4)7

with ¢tot(14D), cmin(pp) as in (3.2.10).

The proof of this theorem relies on a dynamic approach, like for results in Section 3.2.1. We
also use two important inputs: (i) the Burgers’ equation satisfied by the Stieltjes transform of the
semicircle distribution, and (ii) an inequality from free probability, due to Guionnet and Maida,
regarding the subordination function of the free convolution at the edge. We also need a new
result in free probability, possibly of independent interest, which we prove in Appendix B: The free
convolution of any measure with semicircle decays at least as fast as a square-root at its extremal
edges.

We remark that it is not obvious that the same threshold ¢, should work both for total critical
points and for local minima, and the analogue is false in closely related models. For example,
consider the Hamiltonian (3.1.1), i.e. Hy(z) = 4|z||* + Viv(z), but defined over {z € RY : ||z <
RVN } for some fixed R > 0 rather than over the whole space. Fyodorov, Sommers, and Williams

[93] showed that, for some choices of R, the complexity of total critical points is positive but
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the complexity of minima vanishes. (See [62] for related independent work.) But [94] proved the
analogue of point 1 for their model, discussed above, which is defined on the full space. See [94,
Section 2.4] for further discussion of the differences between the full-space models like ours with

“smooth confining potentials” and the “hard-wall confining potentials” of [93].

Example 3.2.9. The model (3.1.1) is a special case when Dy = pld for some scalar p > 0. In

our notation, this corresponds to jup = 6,,. Theorem 5.2.6 yields

2 .
(ot 1) ~1os( ) < e =VEO

St (5, B"(0)) = (equivalently, if [ 200 > 1)

0 if 10> pres (3.2.13)

2

2 .
-3 - tou(hy) +4+ s — | < e

if 1> e

Emin(é,u’ B//(O)) —

)

These recover results of [84, Equations (18-19)] and [94, Equation (81)], respectively. We also
recover their results on decay near criticality, as one can check by hand that the behavior predicted

by Theorem 3.2.8 (which gives ciot(04) = ﬁ and cmin(0,) = ﬁ here) is correct.

Example 3.2.10. We give one more explicit example, namely when

m,o? \/(40-2 — (CC - m)2)+
pp(dz) = pL(sc ’ )(dJI) = D) dz

is the semicircle law of mean m and variance 0. (Notice we need pup(dx) supported in (0,00),
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equivalently m — 20 > 0, for the model to be well-defined.) In this case we have

m | /2 _ 2 _ . m | _ m+vm2—402
4”2< moA T B/I?m) o2 ( B"<o>+o2>
tot " _ g —1+7m"i =
> (MD’B (0)) Zf IMD t = F = B/ll(o)v
. dt
0 Zf fMDti(Q) < Blll(o)a
14 m(—m+vm2—402)  m>+do>—4my/B"(0)+02? log [ mtym?=ig?
10” 2B7(0) 8\ 2B (0107
min /" — i dt
O O R S
dt)
O Zf f“D( \ B//l(o)'

As a consistency check, in the limit o | 0 we obtain exactly the formulas (3.2.13) with p replaced
by m.

3.3 STABILITY OF THE MATRIX DYSON EQUATION

In this section, our goal is to give general results on the stability of the Matrix Dyson Equation
For example, the MDE for GOE matrices is

Id+<zld+]b"[&~(MN(z))+ ;MN(z)T>MN(z) —0, TmMy(z) >0

but + My (2)" should be thought of as an error, and it is more convenient to consider the unique
solution M} (z) to

Id—i—(zld%—]ifTr(M]'V(z)))MJ’V(z):O, Im My (2) >0

In this section we prove stability of such MDEs to conclude 5 Tr My (2)

z) ~ & Tr M (2) for their
respective unique solutions. Similar arguments have appeared in papers of Erdds and collaborators
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for example [6], but in more involved contexts where an exact deterministic solution of the MDE is
compared to a random near-solution with small (random) error. Since we are interested in slightly
different perturbations of the MDE, and only in the deterministic case, we adapt their arguments
to give a short self-contained proof here.

Fix a sequence (Pn){_; of positive integers (typically we take Py = N or Py independent
of N). It is known [106] that, whenever S : CPN*PN — CPNXPN i a linear operator that is
self-adjoint with respect to the inner product (R,T) = Tr(R*T) and that preserves the cone of

positive-semi-definite matrices, and whenever a(u) € RPN*FPN is symmetric, the problem

— MY (u,2) = z1d —a(u) + S[M (u, z)] subject to Im M(u,z) >0 (3.3.1)

has a unique solution M (u, z) € CPN*PN for each z € H and u € R™, and

1M (u, 2)|| < (3.3.2)

=

Fix two sequences (Sy)%_; and (Sy )R, of such operators and two sequences (ay(u))F_; and
(a'y(u))_, of such matrices (i.e., Sy and Sh act on CPN*PN and ay(u), aly(u) € REV*EN) and

consider the associated solutions:

Sy and ay(u) induce Mny(u,z), Sy and d’y(u) induce My (u,z2).

In this section, our goal is to show that My and M}, are close if Sy and S§ are close and ay(u)

and a'y (u) are close; we will use this to help identify uo for both of our models.
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Lemma 3.3.1. Suppose that, for some x > 0,

sup max([lan (u)|, [y (W) < £ max(1, [Jul]), (3.3.3)
SNl hs—s ) < K (3.3.4)
K
IS8 = Skl =11 < N (3.3.5)
lan (u) — aly (u)]] < rmax(l, flu) (3.3.6)

N
Ifo<y < %, then for each R and each A there exists § > 0 with

1 A 1
sup — [ |Te(My(u, E+iN77)) — Te(Mu(u, E+iN"))|dE < N ~°.
—A

u€EBR

[«

Proof. Notice that My (u, z) almost solves the MDE (3.3.1) with § = S) and a(u) = da/y(u); in

fact,

—Mny(u,2)"t = 21d —dy (u) + Sy [Mn(u, 2)] + (Sy — S)[Mn (u, 2)] + dy (u) — an(u),

=:dn(u,z)

and dy(u, z) is an error term in the sense that, if u € By (we take R > 1 without loss of generality),

from (3.3.2), (3.3.5), and (3.3.6) we have

koL rkmax(1, ||ul) o k(1 +nR)

< — . ..
ldn (us 2)Il < &7 N STV (3.3.7)

We will apply standard stability theory of the MDE, which lets us conclude from this that My
is close to M},. In fact, our goal is significantly easier than that in the literature, because our

approximate solution to the MDE is deterministic. In the generality we need, this theory has been
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developed in [6], and manipulations exactly like those preceding (4.25) there let us conclude

[ My (u, 2) = My (u, )|
(3.3.8)
< Lyt (u, 2) || M} (u, 2) | <||dN(u, My (w, 2) || + [|Si [ M (u, 2) — My (u, Z)H2>-

Here Ly (u, z) : CPNvXPNn 5 CPNXPN s the “stability operator”
"?N(uv Z)[T] =T- M]IV(ua Z)’S]/V[T]M]IV(U7 2)7

which is invertible for every w and every z by [6, Lemma 3.7(i)]. Inserting the estimates (3.3.2),

(3.3.4), and (3.3.7) into (3.3.8) yields

1+nR
Nn?

M (0,2) = Mg, 2)] < S5 )| + My () = My 2)?). (33.9)

As usual, this quadratic inequality is fundamental to our strategy: We use it to show that ||[My —
M| is small for very large 7, then fix E' and decrease ) with a continuity argument. To make this
bound useful, we import the following estimate on ||.Z~1(u, 2)|| from [6, (3.23), (3.22), Convention

3.5] combined with (3.3.2): There exists a constant C' such that, for all v and z, we have

_ 1 Mh(u, 2)~1)°
1L (u, 2)|| < C(l + p + W) (3.3.10)

We use this estimate differently for n > 1 and n < 1, which are the two steps in the remainder of

our argument.

Step 1 (n > 1): If u € Bg for some R (we take R > 1 without loss of generality), then taking
norms directly in the MDE (3.3.1) and applying (3.3.2) and (3.3.3) yields

1My (u, 2) 7 < L2l + llan ()l + [ My (u, )| < J2] + 6B + 1.

If n > 1, then |z] < nV1+ E?, so for any choice of Enax there exists a constant Crp,... =
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CR,Emax <1 Such that

Mh (u, z)~1
sup w g CR,Emax .
IElgEmax,n>17U€BR T’

Inserting this into (3.3.10) gives, for a new constant Cr g,.. = CR Eupu 15

sup 127! (1, 2)| < OR B - (3.3.11)
|E‘<Emaxy77>17U€BR

Now fix |E| € Emax, and consider the functions fy : (0,00) — R and g3 : [1,00) — R defined

by

Inm) = fyu(n) = |Mn(u, E +in) — My(u, E +in) |,

+ n 4K2(CR By )2(1 +1R)
= — 1+4/1— : .
gN(n) ZKC’R,EmaX ( \/ N774

(The functions g () are well-defined if N > 4(CR.Byay )2(1+ R).) The quadratic inequality (3.3.9)

with the estimate (3.3.11) inserted give, for all N > 4(Cg g, )? and all n > 1,
() € (0,95 (M U [g3 (1), ).
Ifn> max{l, \/4IiéR’Emax }, then the crude bound (3.3.2) yields

Ui +
<—-X< )
fn(n) 2 an(m)

so that fx(n) < gy(n). But since My (u,z) and My (u,z) are both holomorphic matrix-valued
functions of z [106], we know that fy(n) is a continuous function of 7. Since gy (1) < g% (n) for all

n > 1, we have fn(n) < gn(n) down to nn = 1. Notice that this is uniform in u € Bg.
Step 2 (n < 1): Now we estimate
1 C}%?Emax

1My (u, 2) 7 < L2 +%R+5 STy
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for some Crp = Crp . . Inserting this and (3.3.2) shows that, for some Cp p

1!
CR,EmaX o We have

12~ (u, 2)]|

"
—929 < CR

sup (3.3.12)

|E|<Emax ,n<1,u€Bgr n

7Emax :

Now fix |E| < Fmax and consider the functions h% : [N~1/%0 1] — R defined by

23 420// 21+ R
hi(n) n<1i\/1_ 2 (O B )2 (1 + 1) )).

B 26Ch g Nn8

As above, the quadratic inequality (3.3.9) with the estimate (3.3.12) inserted give, for all N and

all n <1,

I (n) € [0, hyy ()] U [hK (1), 00).

But when n=1and N > 4K2C%7Emax éR,Emax (1+ R) we have (using 1 — /1 -z < z)

26CR B L+ R) _ 1

1) < gy(1) < < (1),
fn(1) <gn(1) N W < h(1)
so the same continuity argument as above gives
- 25CR By 1+ R)
fn(n) < hy(n) < N . (3.3.13)

Again, this is uniform over u € By and |E| < Epax -

To show the statement of the lemma, given R, 0 < v < %, and A, we choose FEn,x = A above;

then applying (3.3.13) yields
1 A
sup N/ I Tr(Mn (u, E+iN77)) — Te(My(u, E +iN77))|dE < (4AKC% 4(1 + R))N?7~1,
—A i

uEBR

This holds for N large enough depending on «, R, and A. O
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3.4 ELASTIC MANIFOLD

3.4.1 Establishing the wvariational formula. In this subsection we establish a variational
formula for complexity, given over RL?. In the next subsection we analyze this variational problem,
first by reducing it to a variational problem over R and then by relating it to the variational problem
we analyze in depth for the soft-spins model.

In this subsection, we frequently reference notation and results in the companion paper [35].

Let
J =2,/B"(0)

which will be an important scaling factor. For each u € RLd, define
a(u) = (—toA + diag(u) + o Id ay a) € RE X, (3.4.1)
and for each z € H let meoo(u, 2) = (Moo (u, 2)1, . - . , Moo (1, 2) 1a) € CE* be the unique solution to

Moo (1, 2) = diag[(a(u) — J*meo(u, 2) — 21d)™!] such that Immeo(u,z) > 0 componentwise.
(3.4.2)
(Recall we identify vectors with diagonal matrices; we will prove existence and uniqueness during
the proof using the methods of Erdés and co-authors.) Let oo (u) (which also depends on L, d, to,

and pp) be the measure whose Stieltjes transform is given by

Theorem 3.4.1. The probability measure poo(u) admits a bounded, compactly supported density
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too (U, ) with respect to Lebesgue measure, and

) 1
X(po) = X(po, L, d, to) := ]\}lm Wlog]E[ tot]

. Jul? (3.4.3)
= —7q log(det(uo ld ~toA)) +ui§12d / log|-|dkos(u, ) = 55973 (-
Furthermore, if we define the set
G ={ueRY: po(u)((—00,0)) = 0} (3.4.4)

of u values whose corresponding measures pioo(u) are supported in the right half-line, we have

1
Est(MO) = E(M,L,d, tO) - thU.p NL IOg]E[N ]

N—oo

) 2 (3.4.5)
=7 log(det(uoId —tpA)) + bup{/log| |dptoo (u, +) — 5 2[4 }
The suprema in (3.4.3) and (3.4.5) are achieved (possibly not uniquely).

We first build the relevant block matrix. With a(u) as in (3.4.1), let
AN(U) = a(u) R Idn«n -
For each N, let (Xi)iL:dl be a collection of L¢ independent N x N matrices, each distributed as .J

times a GOE matrix, with the normalization E[((X;);x)?] = JQW. Let

d
Wy => E;®X,
i=1

HN(U) = AN(U) + Wh.

This matrix is in the class of “block-diagonal Gaussian matrices” studied in [35, Corollary 1.9]. It

appears naturally in the Kac-Rice formula, but we also introduce a slight modification that is easier
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to work with. Let

— 1
Wy=[(1-—=Id) 0o Wy,
N( ﬂ) N

Hy(u) = An(u) + Wy,

where 1 is the matrix of all ones and ® is the entrywise product, i.e., W;JV is just Wi rescaled to
make the variances J?/N both on and off the diagonal, coupled appropriately with Wy.

Now we simplify the MDE. It is known [106] that, whenever S : CLIXLY _y CL'%L? ig g linear
operator that is self-adjoint with respect to the inner product (R,T) = Tr(R*T) and that preserves

the cone of positive-semi-definite matrices, the problem
— M Yu, z) = 21d —a(u) + S[M(u, z)] subject to ImM(u,z) >0 (3.4.6)

has a unique solution M (u, z) € CL™*L? for each z € H and u € RL?. We will consider this problem

with two choices of operator S:

suir] = 2N

diag(7T") induces My (u,z),

Soo|T] = J*diag(T) induces My (u,2).

Write .%; (respectively, .#;) for the “stability operators” of [35, (1.15)] corresponding to the matrix

Hpy(u) (respectively, Hy(u)). Then we can compute

N

SLENEY

k=1

14 6 . VLR
— Tk diag(r), Filr] = ~ Z diag(r).
k=1

Thus the choices m(u,z) = (My(u,z2),..., My(u,z)) and m(u,2) = (Mso(u,2),..., Mx(u, 2))

exhibit solutions to the block MDE [35, (1.16)] for the matrices Hy(u) and Hy(u), respectively.
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That is, the measure py(u) that appears in the local laws for Hy(u) has Stieltjes transform

/W _ % Te(My (u, 2)),

and the measure that appears in the local laws for Hy(u) is actually independent of N: We call it

loo(u), and its Stieltjes transform is given by

ool ds) 1
..~ d Tr(Ms(u, 2)).

Lemma 3.4.2. Both pun(u) and peo(u) admit densities un(u,-) and poo(u,-) with respect to

Lebesgue measure, and

sup maX{HMN(uﬂ Z)Hv ||M00(u7 Z)”v ”:U’N(u7 ')HLOO, HMOO(U7 )”L‘X’} SV Ld/J
ueR™ zcH,NeN

Proof. The following arguments are due to Laszlé Erdés and Torben Kriiger. We prove the result
for My and pp; the proofs for My, and peo are similar. By taking the imaginary part of (3.4.6)
and multiplying on the left by My (u, z)* and on the right by Mpy(u, z), then taking the diagonal

of both sides, we obtain

Imdiag(Mpy(u, z)) = diag (MN(u, z)* (7] + JQ% Im(diag(Mny (u, z))))MN(u, z))
(3.4.7)
= Fv(u,2)(n-+ P2 Imding (M (u.2)) ).

where Fiy(u, z) € REL? s given elementwise by Fn(u,2)ij = |(Mn(u, z))ij\Q. By transposing the
MDE (3.4.6) and using the fact that a(u) is symmetric, we see that My (u, z) is symmetric (but
not Hermitian) as well. Hence Fiy(u, z) is a real symmetric matrix with nonnegative entries. The

inner product of (3.4.7) with the Perron-Frobenius eigenvector of Fiy then gives ||F|| < %NLH,
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since Im(diag(Mp(u, z)) has all positive components. Thus

1 N
1M (u, 2)[* < Tr(My (u, 2)* My (u, 2)) = (1, Fi(u, 2)1) < ﬁde-

Now for any interval [a, b] we have

u a u b ¢
(w{ });F“N( J{}) :17%1; ) Im%TY(MN(’UJ,E—Fm))dEg (b—a)ﬁ~

() ([a, ) + 2N .

By standard continuity arguments we extend this to pn(u)(A) < |A\g for any Borel set A; this

implies that uy is absolutely continuous with respect to Lebesgue measure with a density that is

pointwise bounded by VLT O

™

Lemma 3.4.3. For every R, there exists € > 0 such that

Sup W (Bl ) roe () < N (3.4.8)
UEBR
Proof. First, note that
Sup [AN (W) = l[la(u) @ 1d || = [la(w)|| < HIA] + [Jull + 1 < oo. (3.4.9)

Along with Lemma 3.4.2, this verifies the assumptions of [35, Corollary 1.9], the proof of which
shows that (3.4.8) holds with o (u) replaced by pn(u) (the result is locally uniform in w since all
the assumptions are). To compare py(u) and poo(u), we use the result of Lemma 3.3.1 (with the

choices Py = L%, S)y = Sy as above) and follow the proof of [35, Proposition 3.1]. O

Lemma 3.4.4. There exists C > 0 with

E[|det(Hy (u))]] < (Cmax(]ul, 1))".
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Proof. Deterministically,

[det (Hy (u))| < [Hy ()Y < (IWnll + [An (@) [)Y < @IWN DY + @l Av () )™

In the proof of [35, Corollary 1.9], we showed P(||Wy|| > t) < e~V max(01=C) for some constants

¢, C, which implies E[||Wx||V] < e“N. With the estimate on || Ay (u)|| from (3.4.9), this suffices. [

Lemma 3.4.5. For every R and every € > 0, we have

NI N og v 08| SUp BldpL(fary ), Hoo(w)) > £)| = —oc.

Proof. The laws of the entries of v/ NHy(u) satisfy the log-Sobolev inequality with a uniform
constant, since they are Gaussians. (If they are degenerate, we recall that a delta mass satisfies
log-Sobolev with any constant.) This is true uniformly over u € RLd, since u only affects the mean,
and translating measures preserves log-Sobolev with the same constant. Hence [103, Theorem 1.5]

give, for some constants C7 and Co,

~ R 1 Cy o 5)
P E < —= ——N .
ujllgzd (dBL(Ary (u)s Elftmry (w)]) > €) 32 eXP( s7alV e

To relate E[fig, (u)] t0 fioo(u), we use Lemma 3.4.3. O

Lemma 3.4.6. For every e >0 and R > 0, we have

lim inf P(Spec(Hn(u)) C [1(poo(v)) — &, T( oo (1)) +€]) = 1. (3.4.10)

N—ocoueBRr

and in fact the extreme eigenvalues of Hy(u) converge in probability to the endpoints of oo (u).

Proof. The local law [6, Theorem 2.4, Remark 2.5(v)] tells us that, for every ¢ and R, there exists

C¢ r such that

uieanR}P’(Spec(HN(u)) C [Llpecl)) — 5 2 (aoc() + D >1- Gar (3.4.11)
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(We can take the infimum over v € Bg because the local-law estimates are uniform over all models
possessing the same “model parameters,” see the remarks just before Theorem 2.4 there. Our
model parameters depend on uw but can be taken uniformly over u € Bpg, for example because
SUpyepy, [[An (u)]| < 00.)
Notice that
ANZHN(U)—m)ZWN—WTV
is a diagonal matrix with independent Gaussian entries of variance J?/N that does not depend on

u. Thus

—~ d
sup. B A () — i ()| 2 5) <1813 5) < 2 AE o) (3410

ueRL?

and similarly for Ay, . Since

P(Amax (Hy (u)) 2 (poo(u)) + €)

< P(Amx (Hn(u) > rlpioo () +

e

2) +P(’Amax (Hn (1)) — A (HN(u))‘ § ;)

and similarly for Apin, (3.4.11) and (3.4.12) imply (3.4.10).
For the other inequality, namely that liminfy o Amax (Hn (%)) = r(pieo(1)) in probability, we
note that fig, () concentrates about poo(u) in the sense of Lemma 3.4.5. The smallest eigenvalue

is handled similarly. O

Lemma 3.4.7. With G.. as defined in [35, (4.5)] and G as defined in (3.4.4), we have that each

Gie is convex, that Gy1 has positive measure, and that

U g—i—a :g

e>0

Proof. Whenever u,v € RE" and t € [0, 1], one can check Hy (tu+(1—t)v) = tHy(u)+(1—t)Hy (v);
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thus

Amin (Hx (tu + (1 = 1)) = tAmin (Hy (1)) + (1 = ) Amin (Hy (v))

almost surely, and by letting N — oo and applying the convergence in probability of Lemma 3.4.6
we obtain 1(pieo(tu + (1 — t)v)) = t1(feo(u)) + (1 — t)1(1eo(v)). Hence each G4, is convex.

Since —tA and pId are positive semidefinite,
Amin (AN (1)) = Ain (a(u) @ Id) = Apin (a(w)) = Amin (—tA + diag(u) + p1d) > min(ug, ..., upa).

On the other hand,

Le Ld
Amin (WN) = Amin ; Ei; X, = rl,nzi?()\min (Xz))

which tends almost surely to —2J in our normalization. Thus
lim inf Apin (Hy(w)) = min(ug, ..., upd) — 2.J.
N—o0

which, combined with the convergence in probability of Lemma 3.4.6, shows that G, has positive
measure.

Finally, we note that the inclusion U.~0G1. C G is clear, and that G is closed by [35, Lemma
4.6]. To show the reverse inclusion, write T € RL for the vector of all ones; then it is easy to
check Hy(u + 01) = Hy(u) + 01d, so by the convergence in probability of Lemma 3.4.6 we have

1(ftoo(t + 01)) = 1(ptoo(u)) + 8. This completes the proof. O

Proposition 3.4.8. We have

o Nl Jul?
lim —— log /R eV det(Hy (u))]) du = Supd{ / log Moo (1, 1) dX = S5 b (3.4.13)

ueRL
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and

i L Nl Jul
hj{fnj;lop NIZ log /RLd e 27 El|det(Hn(u))|[1gy =0l du = itelpg){/log|A|uoo(u, A)dA — 5 2[4
(3.4.14)

where G is defined in (3.4.4).

Proof. For (3.4.13), we apply [35, Theorem 4.1] with a = ﬁ, p=0,and © = RL". (Technically,
we are applying this theorem with N there replaced by NL¢ here, which is the size of Hy; this
is why « is ﬁ and not #) We checked the conditions of this theorem in [35, Corollary 1.9]
and Lemmas 3.4.3 and 3.4.4. (All the results are locally uniform in u because all the parameters
of the random matrices are.) For (3.4.14), we apply [35, Theorem 4.5] with o = ﬁ, p =0, and

© = RL’. We checked the conditions for this result in Lemmas 3.4.5, 3.4.6, and 3.4.7. O

Proof of Theorem 3.4.1. Kac-Rice computations in [88] show, exactly for finite N,

Jlw))?
1 1 1 e N
W ].OgE[ tot] = — ﬁ log(det(uo — tOA)) =+ W log RLd WEHdet(HN(U))H du,
1 1
NI log E[Nut] = — Td log(det(ug — toA))
_ v ll?
1 e 2J2
+ NId log s WEHdet(HN(U))“HN(u»o] du,
where Hy(u) is as above. Then we apply the above Proposition. O

3.4.2 Analyzing the variational formula. The following concavity property is the key reason
the complexity thresholds can be calculated explicitly, from the variational formulas appearing in

the previous section.
Proposition 3.4.9. The function

_ ]
Slu) = [ ToglA ool ) A = 5 5
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18 concave.

Proof. We assume d = 1 below, the general case requiring only notational change of L into L¢. The
MDE for our problem, namely (3.4.6) with the choice S[T] = J?diag(T), has a matrix solution
M(u,z) = Moo(u, z) (we now drop the oo to save notation). The problem can be reduced to a
vector MDE for m(u, z) = diag(M (u, z)) =: (m1(u, 2),...,mp(u, z)) by taking the diagonal of both
sides of (3.4.6). (In fact, M (u, z) can be reconstructed from knowledge of i (u, z) via (3.4.6).) The

diagonal MDE takes the form
— diag(my, ..., mp) = diag[(z — p + tA — diag(us, ..., ur) + J* diag(my,...,mz)) 7. (3.4.15)

We denote 0y = 0,,, and write m = %Zf m; for the Stieltjes transform of p,. The first essential

observation is

d d
— (=L = — . 4.1
dus (—=Lm) P (3.4.16)

Indeed, for any invertible matrix B, we have
(B™Yr = Te(B ™ Yer) (er]) = Ou=olog det(Id +uB ey ) (ex]) = Du—olog det(B + uler,) (ex|),
so that, denoting B(z,u,m) = z — p + tA — diag(u1, . .. ,ur) + J2 diag(m1, ..., myz), we have

d
N log det B = 8, log det B + J? Z@mj logdet B - Oymj = my, — J? ijakmj,

Uk J j
d
o log det B = 8, log det B + J*? Zj:amj logdet B - 0.mj = —Lm — JQ;mjﬁzmj,

ie.

mg

—i(lo detB—l—ﬁZmz)
N U 5 2 j i’

—Lm—i(lo detB+‘]—22m2)
B Pha 2 > i
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We conclude that diuk(—Lm) = %mk.

With (3.4.16), we obtain

1
8k/10g|)\\,uoo(u, A) = W—L/log|)\\8)\1mmk()\+10+)

__1r1 gy — 1 0+
=——7 )\Immk()\—i—lO ) = LRemk(10 )

(3.4.17)

Now, from (3.4.15), we obtain
8k(m1, cee mL) = M(Ek + J? diag(@kml, ey 8kmL))M = R(J2ak(m1, .. ,mL) + ek)T

where the matrix Fj (respectively, the vector ex) is 0’s except 1 at position (k, k) (respectively,
position k), and where R = R(u, z) is the linear operator defined by (Rv); = Y (M;;)%v;, with
M = M (u, z) the MDE solution matrix. Thus we have

(1= J?R)(0p) = R(ex)",

from which

—

O 1—J?°R)"HJPR -1+ 1)(ex)T —Id4+(1 = J2R) Y (ep)T.

1
= 5 — 5

Taking the jth component of both sides, we get the scalar equation
1 2y —1
Okmj = ﬁ(_ Id4+(1 = J*R)™ ")k
Together with (3.4.17), this gives
L

vi/logu — lpioe (1, ) = < (1d = Re[(1 = J2B) 1], (3.4.18)

Lemma 3.4.10 below, due to Laszlé Erdés and Torben Kriiger, shows that Re[(1—J?R)~!] > 0 in the
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[lu]?

sense of quadratic forms. Along with (3.4.18), this gives concavity of [p log|A|peo(u, ) dX — 57573

in u. O

Lemma 3.4.10. For each u € R and each z € H, let R(u,z) € CLIXL? pe defined elementwise
by
R(u, 2)j5 = (M (u, 2)j5)* =t €202k | M (u, 2) ju|?,

where M (u, z) = Moo(u, z). Then for every u € ]RLd, every z € H, and every nonzero vector v we

have

Re<v, (Id — J*R(u, z))v> > 0.

In particular, for any w, written as (1 — J>R)v, we have
Re(w, (1 — J*R)"'w) = Re((1 — J*R)v,v) > 0.

Proof. Consider the matrix F(u,z) € RE'*E? defined elementwise by F(u, 2)jk = |M(u, z)jk|2.

The proof of Lemma 3.4.2 shows that sup, pra , p [|1F(u, 2)|| < 1y, Given v € CL, write [v] =

J2:
(Jv1], ..., |vpal); then
Ld
Re<v, (Id —J?R(u, z))v> > ReZ(l — J?|M(u, z)jj’2€ie(f,2’)jj) \vj\Q —J? Z|M(u, z)jk|2\vjvk]
j=1 i#k
Ld
= 30 (1 = PAM(u, 2) 517 cos(O(u, 2)55) ) os]* = T2 D0 IM (u, 2) e lvjund
j=1 i#k
Ld
= (Jol, (14 =J2F (u, ) ) o] ) + T2 S~ (1 = cos(0(u, 2);3))| M (u, 2)5*|v;]?
j=1
Ld
> (Jol, (1 =2F(u,2))lel) + 7 3 2(1m (M (u 2)55) s
j=1
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The first term is nonnegative since || F'(u, z)|| < %, so we have
2
Re<v, (Id—JzR(u,z))v> > 2.J2 (mi{llm(M(u,z)jj)> v]2.

But Im(M (u, 2);;) is the (4, j) entry of the matrix Im M (u, z), which is (strictly) positive definite
by the definition of the MDE. O

Proposition 3.4.11. S is mazimized on the diagonal of R?, i.e.,

sup S[u] =supS[(u,...,u)].
ueRL? u€R

Proof. 1t suffices to show that the set of maximizers

M = {u e R : S[u] = sup S[U]}

veRLY

intersects the diagonal. First, M is nonempty, since (by [35, Lemma 4.4]) S is continuous with
lim| 400 S[u] = —oco. Furthermore, M is closed under the operation “permute the coordinates
(which are indexed by lattice points) with a permutation that is also a translation of the periodic

)

lattice,” since such permutations preserve a(u) in (3.4.1) and thus ps(u). Finally, M is convex,
since S[u| is concave.
Given u € M, its images under all possible lattice translations are thus all in M, so the

average of all these points (which is in their convex hull) is in M. Since the lattice is periodic (i.e.,

translations are in bijection with lattice sites), this average is on the diagonal. O

Proof of Theorem 3.2.2. Using Proposition 3.4.11 to restrict the variational problem from Theorem

3.4.1 to the diagonal, we have

1 u2
Y(po) = —Ta log(det(poId ay a —toA)) + ilelg{/RlongOO((u’ cou), ) dA — 2J2}
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and similarly for minima. One can check directly from the MDE that

Poo ((Uy ..o u), A) = poo ((0, ..., 0), A — u),

and in fact we have o ((0,...,0)) = psc g2 B fizggatpo1d- Indeed, by symmetry all the entries
of Mmoo (0, 2) must be equal. If we denote by m(z) their shared value (which is also the Stieltjes
transform of p1((0,...,0))), then by taking the normalized trace in (3.4.2) we find that m(z)

satisfies the self-consistent equation

[ Ptoatpuo1a(ds)
m(2) /s—z— J?m(z)
This Pastur relation characterizes [131] the Stieltjes transform m(z) of ps. j2 B fi_oatpo1a- Ex-

changing v and —u gives (3.2.4). O

Proof of Theorem 3.2.4. Since —L~%logdet(pg — toA) = — [1og(A)fi—tgatue1d, the variational
problems given in (3.2.3) and (3.2.4) are exactly the variational problems analyzed for the soft
spins model in (3.2.7) and (3.2.8), identifying pup there with fi_y a4y,14 here (which is gapped
from zero since pp > 0) and B”(0) there with J? here. The statement of Theorem 3.2.4 follows

from our analysis of that variational problem in the next section, since

/ /:L—toA-i-uQ Id(d)\) — ﬂ—toA(dA)
R A2 B (A + po)?
is a strictly decreasing function of g, tending to 0 as ug — +oo and tending to +oo (since the
Laplacian is singular) as po J 0. This proves existence and uniqueness of the Larkin mass as

claimed. O

Remark 3.4.12. Here we take A to be the lattice Laplacian, which is the classic choice in the elastic
manifold, but as suggested in [89] the same methods and proofs allow us to replace A everywhere

with any symmetric negative semidefinite LY x L matriz. For example, this allows for interactions
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beyond pairwise.

3.5 SOFT SPINS IN AN ANISOTROPIC WELL

3.5.1 Establishing the variational formula. In this subsection we prove Theorem 3.2.6,
which establishes a variational formula for complexity. In the next subsection we analyze it to
prove Theorem 3.2.8.

The Kac-Rice formula [2, Theorem 11.2.1] gives

E[Crt'¢"(H)] = /]R E[det(VH(0))| | VH(0) = 016, (0) do
(3.5.1)
E[CHR" ()] = [ | El|det(V2H(0)) | Leaniorzn | V(@) = 0160 (0) o

where

1 1
¢(0) = (2B(0))V2 eXp<—QB,(O)HDNUHQ>

is the density of VH(c) at 0 € RY. (As stated, the Kac-Rice formula actually counts the mean
number of critical points, not in all of RY, but in a compact subset T of RY satisfying some
regularity assumptions; then the right-hand integrals in (3.5.1) are over T instead of RY. To
obtain (3.5.1) as written, we use this version of Kac-Rice for some nested sequence (Tn)7_; of
compact sets whose union is RY and apply monotone convergence on both sides.)

Since V is isotropic, for each o we have that (V2V(c),V (o)) is independent of VV (c); hence
for each o we also have that (V2H(c),H (o)) is independent of VH (o). In fact, since V is isotropic
the distribution of V2V (o) is independent of ¢; and by computation

1
v2§<a, Dyo) = Dy
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is independent of o as well. Thus

E[Crtiot (H)] = /R N E[‘det(VQH(a))’ | VH(0) = 0]¢5(0) do = IEHdet(VzH(O))H / ¢, (0) do

RN

det(lDN E[|det(v2#(0))]].
BICHR" ()] = 3o B[ |det T30 [Lyanuo)s0]-

(3.5.2)

Since the eigenvalues of Dy are gapped away from zero and from infinity, uniformly in N, we have

lgnoo N IOg(det(lDN)) = —/log()\)up(d)\).

Thus it remains only to study the Hessian.

Classical Gaussian computations (e.g., [2, Section 5.5]) yield

@

VZH(0) = Wy + £1d+Dy,

where Wy is distributed according to /B”(0) times the GOE and £ ~ N(0, B”(0)/N) is inde-
pendent of Wy. In fact, since the law of Wi + £1d is invariant under conjugation by orthogonal

matrices, we can assume without loss of generality that Dy is diagonal. If we define
AN(U) =uld +DN
and Hy(u) = Wi + An(u), then we have

EHdet(VZH(O))H = QB”<0>IE [|det(H y (w))]] du,

\/W/
"y ke

(3.5.3)

E[|det (V*4(0)) 1v254(0)0] TR det (i () Lty 0]

Now we study the relevant MDE. Given a linear operator S : CVXN — CN*N that is self-adjoint
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with respect to the inner product (R,T) = Tr(R*T) and that preserves the cone of positive-semi-

definite matrices, the problem

— MY (u,2) = 21d —Ay(u) + S[M(u, z)] subject to Im M (u,z) >0 (3.5.4)

has a unique solution M (u, z) € CN*¥ for each z € H and u € R. We will consider this problem

with two choices of operator S:

" tr
SN[T] = BJ\({O) Tr(T) + B”(O)TW induces My (u, z),
"
Sy[T] = B]\(IO) Tr(T) induces My (u,z).

Let pn(u) and 'y (u) be the probability measures whose Stieltjes transforms are, respectively,

+ Tr(Mp(u, 2)) and + Tr(M}(u, 2)). Recall the notation ps, for the semicircle law of variance ¢.
Lemma 3.5.1. We recognize

iy (1) = pye,pr(0) B flay (u)-

Proof. Write m/y (u, z) for the Stieltjes transform of pg. i (o) B fiay (). The Pastur relation [131],
which characterizes the Stieltjes transform of the free convolution of the semicircle law with another

measure, states that m/y(u, z) satisfies the self-consistent equation

(fipy+u1a)(dA) 1 N 1
(w2)=[3 B"(0 =N (D B(0)m/ '
—z — B"(0)m/y(u, 2) = (Dn)ii +u—2z — B"(0)miy(u, 2)

(Recall we changed variables so that Dy is diagonal.) If we define

My (u, 2) = diag ! !
N (Dn)11 +u—z—B"(0)my(u,2)”" " (Dn)NN +u— 2z — B"(0)m/y(u, 2) )’

this Pastur relation then gives m/y (u, z) = % Tr(M/y (u, z)), which means that My (u, z) exhibits a
solution to the MDE (3.5.4) with S = S}. (Since Im m/y (u, z) > 0 when z € H, one can check that

Im My (u, z) > 0.) Thus m/y(u, z), which we defined as the Stieltjes transform of ps. pr0)Bfiay (u);
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is also the Stieltjes transform of p/y (u). O

Let 7, be the translation 7,(x) = = + u, and write (7,).p for the pushforward of a probability

measure p under 7, (i.e., the translation of u by w).

Lemma 3.5.2. The measures p'y(u) and

foo(w) = pse, B0y B ((Tw)«iD)

admit bounded and compactly supported densities on R, locally uniformly in uw (meaning the bound

and the compact set can be taken uniform on compact sets of u).

Proof. These are standard consequences of the regularity of free convolution with the semicircle
law, studied in depth by [49]. For a compactly supported measure p and ¢ > 0, we have [49,

Corollaries 2, 5] that ps: B @ admits a density (pscs B p)(-) with

3 1/3
(Prea Bi)() < (a4 200 = 10D) Ly avierergoravs

To study piy(u), we apply this with g = i, (). Since r(fiay @) < %+ sSupy Amax (Dn) and
1(ftay(u)) = u, both of which are uniformly bounded over u € Bg, we obtain the claim for p v (w).

The proof for pi(u) is similar. O]

Proposition 3.5.3. We have

1 Nu
lim 5 1og [ ¢ FTEdet(H(w)]] du
N—oo N R

- } (3.5.5)

= 1 —_ d " BH —_
ilelﬁ{ /R og|A — ul|d(pse, B0y B 1p)(N) 2B7(0)

Nu
lim —log/e 27O Ef|det (H () |1y (u)>0] du

N—oo N

{ u? (3.5.6)
= sup / 10g|)‘ - u|d(psc,B” 0) H ;U*D)()‘) - }
usL(pyc, prr (0)B1D) © 2B"(0)
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Proof. For (3.5.5), we wish to apply [35, Theorem 4.1] with o = 2,%,(0), p=0,D =R, and oo (u) as
above. To do this, we will consider Hy(u) as a sequence of “Gaussian matrices with a (co)variance
profile,” in the language of [35, Corollary 1.8.A]. So we verify the assumptions of that corollary.

By assumption we have supy Amax (Dn) < 00; thus
S%p ||AN(U)|| < ’U| + S%p >\max (DN) < Q.

Since Wy is /B”(0) times a GOE matrix, the proof of Lemma 3.4.4 gives us E[|det(Hy(u))|] <

(C max(||ul|, 1))V for some C. For the same reason, we can compute directly

B/l (0) B// (0)

E[WNTWy] = ¥

T

Tr(T)1d +

which verifies the flatness condition. Since everything is locally uniform in wu, it remains only to

show

Wi(pn(u), proo(u)) < NT° (3.5.7)

for some k > 0. Since all of these measures are compactly supported, locally uniformly in u, the
Wasserstein-1 and bounded-Lipschitz distances are equivalent, so we will work with dgy,.

First we relate py to py, using Lemma 3.3.1 (with Py = N) to estimate the difference between
their Stieltjes transforms and then following the proof of [35, Proposition 3.1], using the regularity
we established in Lemma 3.5.2. To relate p/y and pioo, we write dy, for the Lévy distance between
probability measures, then combine the translation-invariance of bounded-Lipschitz distance, [71,

Corollary 11.6.5, Theorem 11.3.3], and [48, Proposition 4.13] to obtain

dBL(M;V(u)v HOO(U)) = dBL(psc,B”(O) H ﬂAN(u)’ Psc,B"(0) H ((TU)*MD))
= dBL((Tu)*(psc,B”(O) H ﬂDN)7 (Tu)*(psc,B”(O) & MD))

= dBL(Psc,57(0) B fiDy s Psc, B (0) B D) < 2dL(pse,B(0) B Dy s Psc,B(0) B D)

< 2dr(fipy, ) < 4/dBL(fipy, kD) < N°°F,
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uniformly over u € R, where the last inequality is by assumption (3.2.6). This verifies (3.5.7), and
thus [35, Theorem 4.1] yields

u

2
lim —1 2B”(0>E H = 1 oo (U, ~ SR (-
Jim = log / [[det(Hy(u))]] du ilelﬁ{/R 0g| Al oo (1, A) A QB”(O)}

To obtain (3.5.5), we notice that

fioo (1, ) = (Pse,(0) B ((7u) «p10) ) (A) = ((Tu) (Pse, 57 (0) BiD))(A) = (Psc,p(0) Bup)(A—u) (3.5.8)

and change variables twice (exchanging u and —u). This completes the proof of (3.5.5).

For (3.5.6), we wish to apply [35, Theorem 4.5] with o = 2'%,(0), p=0,D =R, and pe(u) as
above. Now we verify its conditions. Arguments as in the elastic-manifold case, specifically Lemma
3.4.5, give [35, (4.6)]. By (3.5.8), P(Spec(Hn(u)) C [L(ttoo(u)) — €, r(ptoc(u)) + €]) is actually

independent of u, and when u = 0 it takes the form

P(Spec(Wn + D) C [1(pse,p7(0) B 1p) — €,T(pse, B (0) B pp) + €J)-

Estimates showing that this tends to one are classical, since Wy is v/B”(0) times a GOE matrix
and Dy has no outliers by assumption (recall that we made this assumption only for counting
local minima, not for counting total critical points). In the generality we need (i.e., with the fewest
assumptions on Dy ), this estimate follows from the large-deviations result [121, (2.5)] (written
for GOE, not /B”(0) times GOE, but clearly goes through in this generality); this verifies [35,
(4.7)]. Finally, the topological requirement [35, (4.8)] follows immediately after noticing that (in

the notation there)

G ={u: poo(u)((=00,0)) = 0} = {u: u = =Lpse,57(0) B up)},

Gee = {u: Upno () > 26} = {u: u > 2 — Upse. (o) B ).
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Having checked all the conditions, we can apply [35, Theorem 4.5] to complete the proof. O

Proof of Theorem 3.2.6. This follows immediately from (3.5.2), (3.5.3), and Proposition 3.5.3. O

3.5.2 Analyzing the variational formula. The key idea presented here is a dynamical analysis
of the variational formulas appearing in the previous section, increasing the noise parameter B”(0).
Important ingredients are the Burgers’ equation (3.5.10) and the square root edge behavior of the

relevant free convolutions, as proved in Appendix B.

Proof of Theorem 3.2.8. In this proof, we state several claims as lemmas, postponing their proofs.

We think of the variational problem as dynamic in the parameter ¢, which corresponds to the
noise parameter B”(0) in the complexity problem, for fixed pup. That is, at “time 0” we have a
pure signal with zero complexity, and as “time” (meaning noise) increases we find a threshold at

which complexity becomes positive. Precisely, write

Mt = Psc,t tH KD,
ét - l(ﬂt)a
Ty = r(/'tt)a

for the free convolution of pp with the semi-circular distribution of variance ¢ (which has density

ue(+)) and its left and right edges, respectively. Let

2

Flu,t) = = [ 1og(Nn(dN) + [ loglA = ulu(3) dA = 3

and recall that we are interested in

5 (up,t) = sup F(u,t),
u€eR

XM (up,t) = sup F(u,t).
ully
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Let

_ pp(dA)
— / =, (3.5.9)

and consider the thresholds

to = inf{t >0:u = ét},

- < uDigiA))l_

Later we will show that ¢ty = t., but for now we distinguish between them. In particular we do
not yet assume that to is finite. Since up is supported in (0,00), we have ug = 0 < £y, and by
continuity we have u; < ¢4 for all ¢t < .

Let my be the Stieltjes transform of i, with the sign convention m¢(z) = [ & ;\(S:‘) . It is known

(see for example [152, 49], noting their opposite sign convention m¢(z) = [ 7=5) that for any z

outside the support of s, we have
Ormy(z) — my(2)0,me(z) = 0. (3.5.10)
For t < ty, u; is not in the support of p;, so (3.5.10) gives

%mt(ut) = Oymy(w)Opuy + Oymy(u) = Oy (u) (Opur + my(ur)) = Oymy(w)(—mo(uo) + mye(uy)).

The (unique) solution to this differential equation is clearly my(uy) = mg(ug), so that

— g (ug) — % =0, (3.5.11)

i.e.

<auF(u,t)> ~0 (3.5.12)

for t < ty.
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Lemma 3.5.4. For any u € R, we have

m(me(u))? — Re(my(u))?
© [ g — (o) = IO~ Relmi(u)?

For t < to (when Im(m¢(u;)) = 0), we can then use (3.5.12), Lemma 3.5.4, and (3.5.11) to
obtain

d ) 9 ) me(u)? | (w)?
—F t)=| =F(u,t —F(u,t = | =F(u,t =— =0.
e t) <8t (u, )>uut+ <8u (, )) u:utatut (c’% (, )>uut 5 gz Y
Together with F'(us,t) — 0 as t — 0, the above equation gives

Flus,t) =0 (3.5.13)

for t < tg.

Lemma 3.5.5. For every measure up and every t, the function F(u,t) is concave in u (possibly

not strictly).

From (3.5.12), (3.5.13), and Lemma 3.5.5 we conclude that

Y up,t) = ™ (up,t) = F(ug,t) =0 for all ¢ < tg. (3.5.14)

Now we study the phase t > ty, showing tg < oo along the way, by considering the evolution of
.

Lemma 3.5.6. For allt > 0 we have

875&5 = — Re(mt(ﬁt))

Since the density of p; decays to zero at its edges (in fact at least as quickly as a cube root
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[49]), we have Im(my(¢;)) = 0 for all ¢. From Lemmas 3.5.6 and 3.5.4 we therefore obtain

d 9 0
SR (t,1) = <auF(u,t)>u:£t8t£t + <8tF(u, t))

u=>

(m(my(t))? 1[4
2*2[(

_ ;(it + Re(mt(ﬁt))>2 - % [(QLF(U’ t))u=et] 2'

_ <_ Re(ma(4) — ‘;) (= Re(mu())) +

To analyze this, we use the following lemma.

Lemma 3.5.7. We have

<0 if O<t<t,,
0
((%F(u,t)> =0 if t=t,,

>0 if t>t..

Thus (3.5.15) is positive for ¢ # ¢, and vanishes at ¢t = ¢.. This has two important consequences.

First, F(¢;,t) is a strictly increasing function of t. Second,
to = te. (3.5.16)
Indeed, on the one hand, for ¢ < ty and small € > 0, we have
Fly,t) < F(liye,t +€) < Fupge,t +) = 0= F(uy,t),

so that ((%F(u, t)) , # 0 by concavity in v (Lemma 3.5.5) and (3.5.12), and thus ¢ # t.. Hence
U=t

to < te < 00.
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On the other hand, if ¢ has the property that sup,cr F'(u,t) = F(¥,t), then we have

0
<8uF(u’t)>uﬁt - Oa

thus ¢ = t.. But tg has this property, now that we know it is finite, since by continuity we have

0 = sup F(u,tg) = F(ug,,to) = F (L, to).
u€eR

We have shown that F'(¢;,t) is a strictly increasing function which vanishes at t.; thus
YO (up,t) = M (up,t) = F(l,t) > F(by,,t.) =0 forall t > t.. (3.5.17)

The fact that both complexities vanish if and only if ¢ < ¢. follows immediately from (3.5.14),
(3.5.16), and (3.5.17) (the case t = to follows from (3.5.14) by continuity).
Lemmas 3.5.5 and 3.5.7 combine to give (3.2.11), as well as strict inequality in X*%(up,t) >

ymin(yn t) for t > t.. Now we prove (3.2.12). To do this, we will rely on Pastur’s relation [131]

pp(dA)
3.5.18
/ A=z —tmy(z) ( )

By taking real and imaginary parts of (3.5.18), we get for any u € R the coupled system

B A —u —tRe(my(u))
Re(mq(u)) = / (A —u —tRe(my(u)))? + 2 Im(my (u))

) )
Im(mt(u)) = t/ ()\ — u— tRe(mt(u)))2 + 2 Im(mt(U))

5 up(dN), (3.5.19)

5 up(dN). (3.5.20)

If v, satisfies F'(vs,t) = sup,cgr F(u,t), then

v,

0= (iF(u,t))u:vt = % Re(m(v).
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We plug this into (3.5.19) and (3.5.20) to obtain, writing y; = Im(my(vt)),

(0 A
—— = | =53 dA 3.5.21
P = [ et Ep o, (35.21)

Y

From its definition, y; > 0. For every ¢ > 0, notice that (u,0) is a solution to the coupled system
{(3.5.21), (3.5.22) }, where u; was defined in (3.5.9). We claim that this is the unique solution when
t < t., but that for ¢ > t. there is exactly one more solution, with y; > 0, and that for such times
this latter solution is the one corresponding to the optimizer (i.e., for ¢ > t. the point u; is not an
optimizer anymore).

For existence and uniqueness of this second solution exactly when ¢ > t., we note that the

positive solutions y; to (3.5.22) are exactly the positive solutions to

1 1p(dA)
= =5 3.5.23
t Jr A2+ 12y ( )

but the right-hand side of this equation is a strictly decreasing function of y;, tending to zero as
Yyt — 400 and tending to % as y¢ | 0 (which is bigger than % precisely when ¢ > t.).

To verify the claim that u; is not an optimizer when ¢ > t., it suffices to show
ug < ¢ forall t. (3.5.24)

Indeed, since F'(u,t) is concave and (%F(u, t)))u:gt > 0 in the regime ¢t > t., (3.5.24) would imply
that u; is not the optimizer of F'(-,t) when ¢ > t..
To show (3.5.24), we will show that ¢ — ¢, — u; is convex with a vanishing derivative at t = ¢,

where it takes the value zero. First we claim

d? d? d
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for all ¢. Indeed, a simple calculation similar to the previous ones gives, for any € > 0,

d
dt

—/ep(dA) Ve (dA)
G —2)A—1) / O —op "
(3.5.26)

me(l — &) = (me(le — &) — me(£))dume(be — £) = / oo

As € ] 0, each of the integrals on the right-hand side converges, since p; decays at its left edge at

least as quickly as a square root by Proposition B.1, and since, for example,

1 P 7 ifp=1/2,
11&1 (\fl‘) T =

X e)xr
R 0 ifp>1/2.

(When p = 1/2, this can be integrated directly at each ¢; when p > 1/2, we use dominated

3
convergence with dominating function %mp_i.) Thus in the limit € | 0 we prove the existence of

%mt(ﬁt) < 0, concluding the proof of (3.5.25). Since

{i(& - Ut)L:tC = = Re(mu (6,) = = = = Re(mi,(£,)) - it - <8F(u’tc)) .

Ut,,

with ¢;, = uy,, we conclude (3.5.24) and thus (3.2.12).

Next we study the degree of vanishing of X%(up,t) = F(v,t) as t | t.. First, note that v,
and y; are C! functions of ¢ > t. with the appropriate right-hand limits at criticality (namely
limy )¢, y+ = 0 and limy )y vy = €, ): this is proved, first by studying y; via (3.5.23) and the implicit
function theorem, then studying v via (3.5.21) using the knowledge of ;. For ¢t > t., Lemma 3.5.4

gives

d 9 9
S F(un,1) = (auF(u,t)>u:Ut Dyvr + (mF(u,t))

=0
Im(my(v;))® = Re(me(v))® | w7 Im(my(ve)® _ yf

2 22 2 2"

u=vy

As t | t., this tends to zero. Differentiating (3.5.23) in ¢ to find an expression for y,y; and inserting
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it, we find

d? 1 y?

—F(ve,t) = yy, = -
2 ) t (dX

dt 24 fR )\lgitz 2)) ¢

As t | t,, this tends to 1t ( Ja %ﬁm)*l — %( Ja “DA;“)) ( Ja “DA(SA))A, which is positive. This
gives us the quadratic decay and the prefactor.

Finally we study the degree of vanishing of X™"(up,t) = F({,t) as t | t.. To do this, we
first study regularity of m(¢;) (we studied regularity of ¢; above, around (3.5.25)). Notice that
Im(m¢(4;)) = 0 but Im(my (¢ +¢)) > 0 for all sufficiently small € > 0, since u; admits a density that
vanishes at the endpoints and is analytic where positive [49]; using this in the real and imaginary

parts (3.5.19) and (3.5.20) of the Pastur relation, we obtain

mi(t) = [ = ftmt 7 (), (3.5.27)
1 :t/ e _1tmt(€t))2 1 (V). (3.5.28)

For t > t., we will show in the proof of Lemma 3.5.7 that ¢;+tm(¢;) < 0; thus [ % < 00

for all p > 0. This also implies, using the implicit function theorem, that £;+tm;(¢;) is a C? function

of t > t., hence so is m(¢;). Differentiating (3.5.28) in ¢ and solving for %mt(ﬁt), we find

LIS 1
dt 2t3 (fR %>

-1
As t | t., this tends to — (fR “D(d)‘ ) (fR “D(d)‘)) . Now we compute derivatives: We have
F(4,,t.) =0, by combining (3.5.15) and Lemma 3.5.7 we find that the first derivative also vanishes
at criticality. Next, from (3.5.15) and Lemma 3.5.6 we have

(;i;F(Et,t) _ <gtt . mt(ft)> (_mtiﬁt) _ % + (im(&)).
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At t = t., this vanishes by Lemma 3.5.7. The third derivative is

3 2

dt3 t dt dt2
mt(ﬁt) Et d )2
-+ ( ; 5 T & me(ly) ) .

2
Since % + my, (4,) = 0, at t = t. this reduces to [(imt(&))tt } , which we computed above
(and which is clearly nonzero). This gives the cubic decay and the prefactor, and completes the

proof. O

Proof of Lemma 3.5.4. For large (in absolute value) negative A and small n > 0, by (3.5.10) we

have

S [Logr - <u+m>\—1ogm (At in)l)u(3) dA

b e = [ e O

_ —Re[ imt(ﬁm) dx] _ —2Re[/A 8Z(mt(x+in)2)dx}

(3.5.29)

dt
Re(m¢(u +in)?) — Re(my(A + in)?)
5 .

We will take A — —oo and 1 | 0 in that order. After these two limits, the right-hand side of

(3.5.29) reads
Im(mq(u))* — Re(ma(u))*
2

Now we claim that

lim / log|A — (A + i) | (N) dA = 0 (3.5.30)
A—— oodt
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for every n > 0. Indeed, since p; has mass one for all ¢ and u¢(r¢) = pe(¢r) = 0, we have

d , d [r. |=A+in
[ logla— (4 Ndr=< [ 1 () dA
G LoelA = (Al ar = 5 [ o = 1)
T _)\ 3
[ log 1 + 1{O¢ e () dA.
¢ A

As A — —o0, the integrand on the right-hand side tends pointwise to zero, and it is bounded in

absolute value by
— +in
0

1OV max{ +1

Earra |

log T

Y

for all A > Ay = Ao(t). This is integrable by Lemma 3.5.8 below and Hélder’s inequality, so we
can conclude the proof of (3.5.30) by dominated convergence.

Thus as A — —oo the left-hand side of (3.5.29) tends to

d . Tt .
T 1o = (u i) dr = [ loglA = (= m)] () dA

t
As n | 0, this tends to % Jlog|\ — u|ue(A) dA by dominated convergence, using for example the
dominating function

max{—log |\ — u|, —log(1/2),log \/ (A — u)? 4 1/2}| 0t (N) | 1ne[e, o)

for n? < 1/2, which is integrable by Lemma 3.5.8 and Hélder’s inequality. O
Lemma 3.5.8. The derivative Oy (X) is in LP(R), as a function of A, for 1 < p < 3/2.
Proof. For n > 0, the Burgers equation (3.5.10) gives

my (X + in)?

O Im(my(N+1in)) = Im (82 < 5

)) = 0. [Re(my (X + in)) Im(my (X + in))]

= [0x Re(me(A + in))] Im(me(X + in)) + [Ox Im(me(A + in))] Re(me(X + in)).
(3.5.31)
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We now consider 1 | 0. As p; is analytic on {A : p(A) > 0} [49, Corollary 4], if A is not an edge or

cusp of i,

i O an(omg -+ i) = i ([ T i(s) ds ) = mui ()
As py is compactly supported and analytic on the set where it does not vanish, this limit is locally
uniform in A. By the same argument, this local uniformity also holds for lim, o Im(m¢(\ +in)) =
mpe(A). We argue similarly for the real part (noting that the interchange lim,, o 9\ Re(ms(A+in)) =
O\ Re(my(X +10T)) is simply a rephrasing of the fact that the Hilbert transform commutes with

differentiation). Furthermore, [49, Proposition 2, Lemma 3] gives

1
sup|m(z)| < —&=. (3.5.32)
zeH \/7?

Thus the right-hand side of (3.5.31) tends to wd\[Re(m¢(A +1i07))us(N)] as | 0, and this limit
is locally uniform in A. This justifies swapping the limit and derivative on the left-hand side of

(3.5.31), and dividing through by 7w we obtain
Orpie(N) = Oy | Re(me (XN +i01)) s (M) (3.5.33)

for A not an edge or cusp of py.

Now we prove the regularity claim. Since p; decays at most like a cube root near its edges
and possible cusps [49, Corollary 5], we have O\u; € LP(d)), for any 1 < p < 3/2. Since the
Hilbert transform commutes with differentiation and is bounded on LP for 1 < p < oo, we also
have 9y (Re(m¢(\ +i07))) € LP(d)), for the same range of p values. Expanding the derivative in
(3.5.33) and using (3.5.32), we conclude that dyp; is in LP for 1 < p < 3/2. O

Proof of Lemma 3.5.5. Assume first that supp(up) is connected. By [49, Proposition 3] supp(u)
is connected for any ¢ > 0. By [49, Corollary 4] y; has a density that is analytic on {z : s (x) > 0}
(although it can have cusps).

Outside of supp(y¢), the function F'(-, ) is concave as the sum of concave functions. For p;(u) >
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0, we compute 0y, F'(u,t) below. For any n = Im 2z > 0 by taking the imaginary part of (3.5.18) we

have on the one hand
pup(dX)(n + tImmy(z))
N —z—tme(2)]?

Im mt

ie.

1=t .5.34
/!)\ztmt 2)|2’ (3:5:34)

for z = u+in and n = 0F. On the other hand, differentiation of (3.5.18) gives

X 1 1

1
X - - ~ 2 with X := :
Redomi(z) =Re g = gReg—5 -5 Wi / - z—tmt (2))2

From (3.5.34), for 2 = u + i0" we have [tX| < 1 so that Reﬁ > 0. Note that by analyticity,

0.m = 0, Rem + i0, Im m, so we have proved

1
aumt(u) 2 _E’

so that
82
o2

F(u,t) < <0.

S
~ | =

Since F'(-,t) is differentiable at ¢; (with derivative — Re(my(¢;)) — ¢;/t) and similarly for r;, this
completes the proof if supp(up) is connected. In the general case, write I for the convex hull of

supp(up), which is necessarily an interval gapped away from zero, write v; for uniform measure on

I, and consider the probability measures M(Dg) = (1 —¢e)up + evr. We temporarily add the measure

()

to the notation for F'(u,t), writing F(u,t,up). We have uy,’ — pp weakly as ¢ — 0; in particular,

since A — log(\) is bounded and continuous on I, we have

lim / log(\) S (dA) / log(A\)p (dN).
e—0

Combined with Lemma 3.5.9 below, this lets us conclude that F(-,¢, ,u(g)) — F(-,t,up) pointwise

(5))

as € — 0. Since each supp(pp,’) = I is connected, F'(-,t, up) is thus concave as the pointwise limit
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of concave functions. O
Proof of Lemma 3.5.6. Differentiating both sides of (3.5.27) in ¢ and using (3.5.28), we obtain

d Oty + t 5 Re(mi(€)) + Re(my (1))

qz Re(m()) = / Ol Re(mi(0)

_ Btgt + Re(mt(ét))
¢

o (dA)

d
+ a Re(mt(ﬁt))

(Differentiability of my(¢;) was established using (3.5.26).) We note that the idea to study the
evolution of the edge by differentiating a self-consistent equation that it satisfies also appears in

the proof of [1, Proposition 3.4]. O

Proof of Lemma 3.5.7. Notice that
0 L
(%F(u,t))u:& = " Re(mi(t))
We work with the right-hand side. We claim that

This is in fact a special case of an inequality established by Guionnet-Maida in the proof of [102,
Lemma 6.1], which says that if ;1 and v are compactly supported probability measures and w is the

so-called subordination function defined implicitly by

A—z ) A—w(@)

/ (LB v)(dA) p(dA)

then

w(r(pBv)) = ().

In our case, v = psc; and p = pup, so that pH v = p;, and the Pastur relation (3.5.18) shows that

the subordination function is w(z) = z 4+ tmy(z). (In fact, these choices give us results about the
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right edge; to get (3.5.35), one should choose 1 = —pup, the measure defined by —up(A) = up(—A)
for Borel A, then track the negative signs.)
Combined with (3.5.28), the result (3.5.35) shows that w; = ¢, + t Re(my(¢;)) is a solution to

the following constrained problem:

1 [ pp(dA)
t /(A —wy)?’ (3.5.36)
wy < 1(pp)-

A short differential calculation shows that f(w) = [ é‘ /\D_(i;‘% is strictly increasing for w < ¢(up), so

(3.5.36) has at most one solution. Furthermore, f(0) = %; this means that the unique solution
(which we showed is ¢; + ¢ Re(my(¢;))) must be positive if 0 < ¢ < t., must be zero if ¢t = t., and

must be negative if ¢ > ¢,. O

Lemma 3.5.9. Suppose that uy is a sequence of probability measures, all supported on some [a, b,
tending weakly to some oo which is also supported on [a,b]. Then for everyt > 0 and every u € R

we have

lim / log|A — u|(pser B pn)(A) dA = / log|A — u)(pses B o) (A) dA.
N—oo JR R

Proof. For small positive 7 = nx to be chosen, define log, : R — R by log, (z) = log|x + in|. For

any probability measure p supported on [a, b], [49, Corollaries 2, 5] yields

3 1/3
(psc,e B p)(N) < (4713152(4 +b— a)) 1, ovicacprovi

. log, (A)—log|A
Since [ w d\ = 7, we have

[ o8l — s 8100 A~ [ o, O~ s B0 | < (24 +-))

432

which depends on f only through [a,b]. On the other hand, the function f,(A) = log, (A — u) is
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%—Lipschitz and bounded on [a — 2v/t,b + 2+/t] by

max{[log(n). [log, (b — u + 2v7)

Y

log, (@ — u— 2v#)|} = [log(n)|

where the equality holds for n sufficiently small depending on a, b, and u. Since combining [71,

Corollary 11.65, Theorem 11.3.3] and [48, Proposition 4.13] gives

dBL(psc,t B UN, psc,t B poo) < 44/ dBL (1N, oo ),

we bound | [ log|- — u|d(psc, B pn) — [glog|- — uld(pse,s B poo)| with

> | gl = ul ~logy (- — ))d(pscs B )| +| [ 1og (-~ u)d(pues B i = prct B i)
V=KN, Koo R R
3 1/3 1
< (g +b=a) m (g -+ o8l )dowores B e B 1)

S L+ ot Yo .
(s 0=a) "+ (5 + hogtn 4y o G )

for n sufficiently small depending on u. If we choose n = ny = (dpL(un, ,uoo))l/ % which tends to

zero as N — o0, this upper bound also tends to zero as N — oc. ]
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Chapter 4

Complexity of bipartite spherical spin

glasses

This chapter is essentially borrowed from [120], which will appear on the

arXiv soon.

4.1 INTRODUCTION

4.1.1 History and motivations. Multi-species spin systems were first introduced in the 1970s
in the physics of metamagnets [109], and in the last fifteen years, their development has been
accelerated by applications of two kinds. First, in many social and biological networks it is natural
to group individuals into two populations, and the result can be modelled with bipartite spin
glasses, for example in immunology with two types of immune cells [3]. Second, certain types of
neural networks, such as Hopfield networks and restricted Boltzman machines, can be mapped to
bipartite spin systems [26, 4, 28].

Partially motivated by these applications, physical properties like the free energy of bipartite
spin glasses have been developed, mostly for what we will later call (1,1) models with Ising spins

or variations thereof. These were treated both in the physics literature, first by Korenblit-Shender
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and Fyodorov-Korenblit-Shender [112, 86, 87] and later by Guerra and co-authors [27, 25], both
under the assumption of replica symmetry, and then by Hartnett et al. assuming replica symmetry
breaking [105]; and in the mathematical literature, first as an upper bound due to Barra et al. [24]
and then a matching lower bound due to Panchenko [129]. The free energy for spherical bipartite
models was established by Auffinger and Chen at high temperature [11], allowing for mixtures
and small external fields, and by Baik and Lee at all temperatures other than some critical one
[20], restricted to what we will call pure spherical (1,1) models. Recently, bipartite spin glasses
appeared as a model example in Mourrat’s program to relate the free energy of disordered systems
to infinite-dimensional Hamilton-Jacobi equations [124].

Beyond applications, bipartite spin systems also serve as a toy model for spin glasses beyond the
purely mean-field regime. Spins interact with each other in two groups, a waystation between the
best-understood mean-field spin glasses (where all spins interact with each other on equal footing)

and the eventual goal of spin glasses with nearest-neighbor interactions.

4.1.2 Results. In this paper, we study the complezrity of high-dimensional bipartite spherical
models. That is, write Hy for an N-dimensional bipartite spin glass, which is a real-valued random
function defined on a product of two high-dimensional spheres (see precise definitions in Section
4.2). Write Crt'¢*(¢) for the (random) number of critical points of Hy at which Hy < Nt, and
Crt%"(t) for the number of such local minima. We wish to understand the large-N asymptotics of
+ log E[Crt9"(¢)] and + log E[Crt ™ (¢)].

This landscape-complexity program — counting critical points of high-dimensional random func-
tions to understand their geometry — was initiated by Fyodorov [84] for a certain toy model of dis-
ordered systems, and re-discovered by Auffinger-Ben Arous-Cerny for spherical spin glasses [10, 9].
Complexity of spherical bipartite models was first studied by Auffinger and Chen [11], who found

continuous functions J, K : R — R such that

: 1 min
J(t) < A}gnooﬁlogE[CrtN (1) < K(t).
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Their strategy was to compare bipartite spin glasses with a coupled pair of usual (single-species)
spin glasses. They also established that J(¢) > 0 for some ¢, so that the system has positive
complexity, and that lim;,_, K(t) = —o0, so that it makes sense to define the “smallest zero of
K7 which is thus a lower bound for the ground state.

In Theorem 4.2.1 below, we give exact formulas for
lim e log E[Crt'y*(2)] lim E log E[Crty™ (¢)]
N—oo N N ’ N—oo N N

that are of the form

u?
sup log|A| oo (1, A) dA .
R 2

u€eD
Here D is some subset of R (for pure models) or R? (for mixtures), and the deterministic probability
measures [ioo(u, ) are found by solving a system of two coupled quadratic equations in two scalar
unknowns. This system arises from the Matriz Dyson Equation (MDE), developed to describe the
local eigenvalue behavior of large random matrices in [5, 75, 6].

For the special case of pure (p, ¢) models with ratio vy = ﬁ (see definitions below), the measures
loo(u, +) are rescalings the semicircle law, so these variational problems can be solved explicitly.
The resulting complexity functions turn out to be the same as those describing the pure p+ ¢ usual
(single-species) spherical spin glass, as established by Auffinger-Ben Arous-Cerny [10]; see Corollary
4.2.5 below. This is surprising, since the models look quite different. It remains to be seen if this
analogy holds for other types of critical points, such as saddle points, for bipartite models with

ratios  other than £~ or for more than two communities.

p+q’

We also show that pure (p, q) models, with any ratio v, exhibit a band-of-minima phenomenon
similar to pure spherical spin glasses. More precisely, there exists a threshold —FE(p,q,7v) < 0
such that, with high probability and for any ¢ > 0, all local minima have energy values below
N(—=FEx(p,q,7) + €); see Corollary 4.2.4 below. It would be interesting to understand the role of

this threshold in, say, Langevin dynamics.

The paper is organized as follows. In Section 4.2 we state our main results, both variational
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formulas for general models and closed-form formulas for the special case stated above. In Section
4.3 we give the proofs, which rely on determinant asymptotics for large random matrices as estab-
lished in the companion paper [35], and strategies for applying these to complexity as established

in the companion paper [36].

Notations. We write || - || for the operator norm on elements of CV*V induced by Euclidean
distance on CV, and if S : CNVXN — CN*N | we write ||S|| for the operator norm induced by || - ||.

We let

f(x)—f(y)’

fllLip = sup
I 1hsp = sup| ==

for test functions f : R — R, and consider the following two distances on probability measures on

the real line (called bounded-Lipschitz and Wasserstein-1, respectively):

o (n.v) =sup{ | [ Fa(n =)

N luip + 11l < 1},
Wi, v) = sup{]/Rfdm—v)

i <1}

We write 1(u) for the left edge (respectively, r(u) for the right edge) of a compactly supported
measure p. For an N x N Hermitian matrix M, we write Apin (M) = Mi(M) < --- < Ay(M) =

Amax (M) for its eigenvalues and
o1&
fr = ; Ox (M)

for its empirical measure. We write ® for the entrywise (i.e., Hadamard) product of matrices.
Given a matrix 7', we write diag(7") for the diagonal matrix of the same size obtained by setting all
off-diagonal entries to zero. In equations, we sometimes identify diagonal matrices with vectors of
the same size. We write Bg(0) for the ball of radius R about zero in the relevant Euclidean space.
We use ()T for the matrix transpose, which should be distinguished both from (-)* for the matrix
conjugate transpose, and from Tr(-) for the matrix trace.

Unless stated otherwise, z will always be a complex number in the upper half-plane H = {z €
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C : Im(z) > 0}, and we always write its real and imaginary parts as z = E + in.

Acknowledgements. We wish to thank Tuca Auffinger for bringing the bipartite spin glass model
to our attention, and Gérard Ben Arous and Paul Bourgade for many helpful discussions. BM was

supported by NSF grant DMS-1812114.

4.2 MAIN RESULTS

We follow the notation of [11]. If M € N, write S™ for the (M — 1) sphere in RM with radius v/M.

Fix some v € (0, 1), suppose that we decompose each positive integer N > 2 as N = Nj + Ny,

where N1 and Ny are positive integers satisfying N1 = vV in the precise sense

Ny —1
=7

N 5 (4.2.1)

(Notice the abuse of notation: Nj is actually a sequence of positive integers.) For any p,q > 1,

define the pure bipartite Hamiltonian for u = (u1,...,uy,) € SM and v = (v1,...,vn,) € SN2 as

HNpqlu,0) = Y > Giveipitsdg Wiy - - Uiy Uy - - U,

1<7;1:-~~7ip<N1 1<j17"'7jq<N2

where the g variables are i.i.d. centered Gaussians with variance N/(N}N{). Equivalently, Hy p.4

is the centered Gaussian process on S™ x SN2 with covariance

1 M p 1N q
E o = N =S| =S vl |
[HN,p,q(ua U)HN,nq(u ;v')] N, ;U U; N, ;” Uy
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Notice that this interaction is genuinely bipartite, i.e. it is not a pure spin glass of the concatenated

vector (ui,...,un,,v1,...,VN,). Define the “mixed” Hamiltonian

HN(uv U) = Z 6p,qHN,p,q(ua U)

p,q>1

where the nonnegative double sequence (8pq)pq>1 is not identically zero and decays fast enough;

for example, >~ .~ 2p+q537q < oo suffices. Define ¢ : [0,1]2 — R by

D9

= Z Bz%,qxpyq
p,q=1
assumed to be normalized as
£(1,1) = 1.

We will say the model is “pure (po, qo)” if 5pq = dppedgqe, and “pure” if it is pure (po, go) for some

Do, qo. Define
fi 0:£(1,1) Z pﬁpq? i/ = 0:2€(1,1) = Z p(p—1) [2),(1’
p,q=1 p,q=1
gé yf (1,1) Z qB}%q’ g = 8yy£(171) = Z q(qg—1) Z%q
p,g=1 p,q=1

Since £(1,1) = 1, one can check with Cauchy-Schwarz that &/ + & — (£/)2 > 0 for each i = 1,2, so

that we may define

& +& - (&)*
Notice that a1 = ag = 0 if and only if the model is pure.
Results. Write Crt{'(¢) for the number of critical points of H at which Hy < Nt, and Crt'e* for

the total number of critical points of Hy. Write also CrtTi®(¢) for the number of local minima of

Hny at which Hy < Nt, and Crt%m for the total number of local minima of H .
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In the statement, we will need the half-space
Hy = {(uo,u1,u2) : ug < t} C R,

Theorem 4.2.1. Suppose that

1>0 and & >0. (4.2.2)

This condition is satisfied if and only if the model is neither a pure (1,q) spin for some q, nor a
pure (p, 1) spin for some p.
For each u € R3, there exists a compactly supported probability measure jioo(u) with a bounded

density pioo(u,-) (see Remark 4.2.2 below for its definition) such that, if we define

3

Sunglu] = [ 1oglAlas (. 1) dA = H5E,

then

1 +’ylog(€l) +(1—7) log(l_,7)

2

=~

+ sup Sheglul,

) (
tot (1) . Tin Lot ()] =
by (t) = 1\}51100 N IOg]E[CrtN (t)] 2 uEH;
(
2

B (4.2.3)
ot 1 ot 1+’ylog(€l,) + 1—7)10g(1§,7)
Y= lim — logE[Crty'] = ! 22 4 sup Speglul,
N—oo N u€R3
and these suprema are achieved, possibly not uniquely.
Furthermore, define the set
G ={u€R>: poo(u)((—00,0)) = 0} (4.2.4)

of u values whose corresponding measures pioo(u) are supported in the right half-line. Then G is
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convex and closed, and we have

ol _ 1y
min 1 i L l0s(g) + (1 -)log(g7)
YM(¢) := lim sup logE[Crt (t)] = + sup  Speglul,
Nooo IV 2 ueHNG
min . 1 min 1+ Wlog(%) + (1 B ’Y) log 1557
™= lim sup N log E[Crty"] = 5 + sup Spsg[u],
N—o0 u€eg

and these suprema are achieved, possibly not uniquely (H; NG is nonempty for every t).

Remark 4.2.2. The measures ji(u) are found as follows: For each u = (ug,u1,u2) € R® and

each z € H, let {m1(u, z), ma(u,2)} € C? be the unique pair satisfying

1+ (z — ;(alul &uo) + & ml(u z) + %mg(u, z))ml(u, 2) =0,

1+ (2= Lo (asus — o) + £ ma(u, 2) + $2m1 (u, 2) )ma(u, ) = 0, (4.2.6)
Im(mi (u,z)) >0,

Im(ma(u, z)) > 0.

Then poo(u) is the measure whose Stieltjes transform at z is ymy(u,z) + (1 — v)ma(u,2). (In
Lemma 4.3.5 below, we will prove all of the implicit claims here about existence, uniqueness, and

reqularity using the methods of Erdés and co-authors).

Remark 4.2.3. In the special case when the model is pure (p,q), the result simplifies somewhat:
The terms aquy and agus vanish in (4.2.6), so peo((ug, u1,u2)) is a function of ug only. Thus G

takes the form

G = {UO X R2 TuUp € gpure}

for some set Gpure = Gpure(D,q,7) C R. Since G is convezx and closed, and the proof shows that it
contains points whose first coordinates are arbitrarily large and negative, in fact Gpure must be an

interval of the form

Gpure = (=00, —Eoo(p, q,7)] (4.2.7)
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for some Ex(p,q,7), which will turn out to be an important threshold. (This notation and sign
convention is intended to invoke [10]; see discussion below.)
One consequence of this simplification is that the variational problems for pure (p,q) models are

one-dimensional:

: 1 tot _
A}gnoo N log E[CrtN"(t)] =

1 1
lim NlogE[Crt'j\?t] =

N—oo

and similarly for minima.

Corollary 4.2.4. For every pure (p,q) model satisfying (4.2.2), the quantity —Es(p,q,) defined
in (4.2.7) is strictly negative, and almost all local minima have energy below —N Eoo(p, q,7y) in the

following senses:
— Forallt > —FEx(p,q,7), we have Zmin(t) = Zmin(—Eoo(p, q,7))-

— For any Borel set B, write Crt'™(B) for the number of local minima of Hy at which Hy €
NB. This corresponds to our previous notation as CrtWi®(t) = Crtii®((—oo,t)). For any

e > 0, we have
: 1 min
lim — log P(Crtfin((— Ese(p, 4,7) + 2,50)) > 1) = —o0.
N—ooo N

In the extra-special case of a pure (p,q) model with v = we can solve the variational

_p_
p+q’
problems explicitly, because then the relevant Hessian is (almost, up to small error) a generalized
Wigner matrix and peo(u) is (exactly) a rescaled semicircle law. In the following we write the

log-potential of semicircle as

if |z| <2,

i - - (e a-1g( MDY ) it el > 2

N[ =

2 JA — )2
Qz) = log|)\—x]47)\d>\:
-9 2
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Corollary 4.2.5. For a pure (p,q) model with v = p%}, we have

D pt+qg—1
EmO%m>=2 —_—,
ptaq ' p+gq

and

I4log(p+q—1) ptq 2 .
1 Ltloglpra=l) 4 oy, [ PHa) _ £ 45y <,
Spralt) = lim - log B[Crti(1)] = ? (/5ketn) - 2 (4.2.8)

log(p—é-q—l) th 2 0’
1 1 -1
Bpig = Jim logE[Crfy) = BT I
2177(1(t) th < _Eoo<p7 q, p?fq%

1 .
i qmin(t) = lim — log E[Crt(1)] =
’ N—oco N » . »
Ep,q(_EOO(pa q, p+q)) th = _Eoo(pa q, p+q)’

. 1 . D log(p+q—1) 2
Yt min = 1 — log E[Crthi™] =2 -F g, — | | = -1
p+q, NE}}X)NOg [Crtn™] p,q< OO(pqp+q>) 9 +p+q

Notice the surprising fact that, as implicit in the notation, these functions depend only on p + q

rather than on p and q individually.

Proof. Since u; and ugy play no role, we drop them from the notation. The scalar problem (4.2.6) is
solved by m1(ug, z) = ma(ug, 2) = m(ug, z), which satisfies a quadratic equation given by (4.2.6);

this yields

VAP ta-Do+ o)~ O+ p+au))s 4,
2r(p+q—1(p+9q) '

Moo (UO, d)\) =

Since the left edge of this measure is explicit, Eo(p,q, ﬁ) can be computed directly. After

changing variables we obtain

‘%%Wmoﬂ”:k%(¢@+q—1ﬂp+®)+Q<%vgi231>_(@F

which is even, strictly concave, and uniquely maximized at zero; this allows us to solve the varia-

O

tional problem.
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Zp+q(t)

0.5~

-2.5 -2.0 -15 -1.0 -0.5 L 0.5 1.0

Figure 4.1: Plots of ¥,,4,(¢), which captures the asymptotic complexity of total critical points with

field values in (—oo, Nt) of the pure (p,q) model at v = I%q’ for p+q =4,5,6 (solid green, dashed
yellow, dotted purple, respectively). Negative values of ¥, ,(t) are irrelevant for us, since we can
prove that the zero of ¥,,, is a lower bound for the ground state (and we believe it is equal to

the ground state). The functions stabilize at ¢ = 0: this is consistent with distributional symmetry

HNpg L N.p,g> since we would expect the total number of critical points to be twice the number

of critical points with values in (—o0,0) on average.

The functions X, ,(t) are strictly increasing on (—o0,0), and 3,14(0) > 0, so they each have a
unique zero. They are plotted for p+¢ = 4,5,6 in Figure 4.1. Notice that p+ ¢ = 4 (corresponding
to a pure (2,2) bipartite spin glass) is the smallest value to which Theorem 4.2.1 applies. As a

corollary, we obtain a lower bound on the ground state of Hy 4 in the classical way.

Corollary 4.2.6. Let —Ey(p + q) be the unique zero of the function ¥,1, defined in (4.2.8), and

consider the Hamiltonian Hy p 4 of a pure (p,q) model with v = -, For any € > 0 there exist

p+q
C1,Cy > 0 such that

P(rgigl HNpq(u,v) < N(—Eo(p+q) — €)> < Crexp(—CaN).
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We compute numerically —Eo(4) = —1.794, —Ey(5) ~ —1.888, and —Ey(6) ~ —1.959. Finally,

Eo(p+q)

lim —f T
pta—oc \/log(p + q)

Proof. To locate the ground state, note that if min, , Hnpq(u,v) < N(—Eg(p + ¢q) — €), then

Crt%¥(—Eo(p + q) — €) > 1; then apply Markov’s. To estimate —Eq(p + q), use the crude bounds

0<Q(—t p_’ij;ﬁl) < —t\/pﬁqul, valid for all ¢ < —2, to get upper and lower bounds for X, 4(t)

and hence for —Ey(p + q). O

In fact, the functions X,1,(t) and X, min(t) have already appeared in the literature, in [10]:
They give exactly the complexities of the numbers of critical points and of local minima, respectively,
of a spherical pure (p 4 q)-spin glass below level Nt¢. That is, define the spherical pure (p + ¢)-spin
Hamiltonian Hy 44 over o = (01,...,0n5) € SV~1 by

1 N

HNpqlo) = N+a—1)/2 Z JitseoiipiaTin = Oipigs

i1 yenriptg=1

where the J variables are i.i.d. standard Gaussians, and let Crt}"°” *9(t) be the number of critical
points (and Crt%™*PT2™" (1) he the number of local minima) of Hy piq at which Hy g < Nt

Then [10, Theorems 2.5, 2.8] show that

1 1 i
lim NlogE[CrtI])\}lre PHI1)] = Sy q(1), lim NlogE[CrtI;\}lre PREIN ] — 5 in (£).

N—o0 N—o0

(A computation shows that our ¥,,, and X,{4min are their ©,,, and ©Og p44, respectively. We
have used their notation for —Ep(p + ¢) in the same normalization.)

But we emphasize that, despite the superficial similarity between the pure p+g¢-spin Hamiltonian

p

HNp+q and the pure bipartite (p,q)-spin Hamiltonian Hy p, with v = i, they are different
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processes: Their covariance structures are (assuming N; = yN for clarity)

N p+q
E[HN,erq(U)%N,erq(U,)] = N1t (Z UW;) )
i=1
pPql ; ; ‘
=1 =1

p+q YN p (1-v)N g
E[,HN,M(%U)Hvayq(ulvv,)]:Nl_(p+q)w(Zuiu;) ( Z W)

Remark 4.2.7. We believe that the restriction “neither a pure (1,q) spin nor a pure (p,1) spin”

can be relazed to “not a pure (1,1) spin,” which is the restriction in [11]. See Remark 4.3.8 for a

discussion of the obstacles.

4.3 PROOFS

Notation. We write

L=[1L,N —1], L=[N,N-2]

For each u € R3, define Ay (u), Al (u) € RUIN=DHNo=1)x(NM=1)+(N2—1)) by

- (equr — Eug) Idn, 1 0
An(u) = An(ug, ur,ug) = | ™ ' ,
0 A (agug — Ehug) Tdy, 1
1 /
“(aqur — &ug) Idy, — 0
Ai) = Ay, g) = [ 711 7S
0 1= (@2us — &ug) Idn, -1

Next, we define random matrices Wy, Wi, € RN =D+N2=D))x((Ni=D)+(N2=1)) gne block at a time.
Write G for an (N7 —1) x (N2 — 1) matrix with i.i.d. centered Gaussian entries, each with variance

%ﬁ% For eachi=1,2, let G; = %MNi, where each M%i is an (N; — 1) x (N; — 1) GOE

matrix with normalization E[(M Nl)fj] = }\Ziz{, and where the M"i’s are independent of each other
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and of G. Then we define Wy by
Gi1 G
Wy =
GT Gy

Let Ty € RIN=D+N2=1))x((M~1)+(N2—1)) he given entrywise by

N2 fikel
(45,7 N(N-2) AR

(Tn)ik = \Joioty = Joomsy ifielkeborjebkel,
2

N. oo
\/ T3 T PN (N -2) itk € b,

and let

W]/V =Tn ®Why.

(That is, W} is like Wi, but all the variances are multiplied by a carefully chosen factor close to
one.) Finally, let

HN(U) :AN(U)-I-WN, H}V(u) :A&(u)—FW]/V

The matrix Hy(u) is the one naturally appearing in the Kac-Rice formula, as we shall see, but it
is well approximated by the matrix H) (u), which is easier to work with.

While the definitions are fresh, we store the following lemma for later use:

Lemma 4.3.1. For every R > 0 and every € > 0, we have

sup P Hy(w) — Hiy(w)] > <) = Ogo(e "),
UGBR(O)

Proof. Write En = Wy — WJ,. From the definitions, we check that Ey is a matrix of independent
Gaussian entries up to symmetry, and that there exists some constant C' such that the off-diagonal

entries of E)y have variance at most C'//N? and the diagonal entries have variance at most C/N. If
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| [[max is the maximum norm for matrices, we thus have

. C N(N -1 VN
(1B — ding(Ex) s > 277 ) € o5 DP(NO,1)] 2 NV < N2 T
Then
P(IEN] > 2) <P(I1Bx] > & | By - ding(Ew)] < 5177 ) + N6~
~
<P(|ldig(Ex)] < 5 ) + N2 F,

where the last inequality holds for N large enough. But now diag(Ey) has independent Gaussian
entries with variance order 1/N, so P(||diag(Ey)|| < £/2) is order e up to polynomial factors in
N; thus

P(|Ex|| > ) = O(e™"),

say. On the other hand, we have

N 1

N
ﬁl - 7“041U1 _fiUO|a

An() — A0 = max] e — ool = o (1),

Since

€
B(|Hx (u) ~ Hic(w)]| > ©) < B(IWx = Whll > 5 ) + Liai -y
this completes the proof. O

An easy variation on the Kac-Rice arguments found in [11, Equation (27), Lemma 2, Lemma

3, Equation (37)] yields the following lemma.

Lemma 4.3.2. With the prefactor

3
_2(7’[’N1)N1/2 2(7rN2)N2/2 N B 5/ Ni—1 7\ No—1 -1/2
R YT A (J;) = () () )
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we have

BIOHI ()] = (N, No) [ e SR et (s () o
llul?

2 Ef|det(Hy (u))]] du,

E[Cry] = f(Ni, M) [ e

E[Crt™in(¢)] = f£(Ny, Ny) / e—NWEHdet(HN(u))uHN(U) > 0] du,

- _ vl
E[CrtT™] = f(Ny, No) /]R eV det(Hy () Lz () > 0] du,

Notice

1+ *ylog(%) +(1—7) log(lgj)
5 .

1
li —1 Ny, Ns) =
NgnooN ng( 1, 2)

Thus it remains only to understand the integrals appearing in Lemma 4.3.2. We will do this with
[35, Theorems 4.1, 4.5] with the choices a = 1/2, p = 2, and ® = R3 or ® = H;. In the following
lemmas, we check the conditions of these theorems.

The matrix Hy(u) belongs both to the class of “Gaussian matrices with a (co)variance profile”
and the class of “block-diagonal Gaussian matrices” (with one block) considered in [35, Corollaries
1.8.A, 1.9]. The latter turns out to be more convenient, so we check the regularity assumptions of

[35, Corollary 1.9] as well.
Lemma 4.3.3. Define the matrix

Ney Nel Ney Ney

=di
o lag N127N127 7N227N227

Ni1—1 times No—1 times

and consider the linear operators Sy,Sl : CWi=Dx(No=1) _y c(Ni=D)x(N2=1) defined on block
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; — (T T2
matrices T = <T21 T22) by

Sy Ty Tis
\T21 T2
(5 me(mn) + R Te(T2) 1 0 |
- Nele Ney + o © diag(T),
0 (vaj Te(Th) + Tr(ng)) Id
sl T Tho
i T51 Too
(s Tr(Tn) + 52y Tr(T20)) 1d 0
; ey ™00+ ey )
T (N1-1) 11 T (Nz—1) 22
(4.3.1)

Here ® is the entrywise (Hadamard) product of matrices. Suppose also that

1>0 and & >0.

Then each of these operators is flat, in the sense that for some k and all N we have

1 K
T> . TY(T) < SN[T] < Te(T
(and similarly for Sy ). Furthermore, we have
sup max(|[Sw|l, IS ll) < oo, (4.3.2)
1
1Sx — Shl| = o(N). (4.3.3)

Proof. Since ‘% - *y‘ = O(3) and &, &) > 0, we can find  such that

1 _ N& N&G& NG ! &% &% 5 < B
k(N —2) ° N2 NiNy’ N3 4(Ny—1) 4(Na—1)" (1 —~)(N; —1)" (1 —~)(Na—1) = N -2
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If T > 0, then 0 < 0 ® diag(T) < %5 Tr(7T'); this suffices to prove flatness for both operators.

Estimates like

lo ® diag(T)|| < N 5 (4.3.4)
and
N¢Y N&&) K2
< <
N ) + e Tr()| < ()] 4 [T(T)) < 2607
establish (4.3.2). Finally, if we define the sequences
S _ NGV —2) (V-2 L _ NGOEWN —2)  §G(NV —2)
“n N? (N — 1) 12 NN, Y(N2 — 1)’
) _NEGIV =) gg(N-2) oy NGIN-2) (N -2)
21 NN 1=V —1) » N3 (1= (N2 = 1)

then using (4.3.4) we conclude ||Sy — Syl < max{|a11 | + |a12 )| |a21 | + |a22 |}. But we assumed

M=l = v in (4.2.1), which tells us max(|a11 )] \a \ |a21 )] ]a \) = O(1/N); this completes the

proof of (4.3.3). O

Lemma 4.3.4. The random matrices Hy(u) satisfy the assumptions of [35, Corollary 1.9/, and

liminf Apin (Wn) = =2, [sup||Sn|| —1 a.s. (4.3.5)
N—o00 N

Proof. For the bounded-mean condition (MS), (4.2.1) tells us that Nﬁl and N% are bounded over N,

furthermore

so that

N N
sup [ A ()| = supmae{ - (farun +[€fun]), y-(lazuel + [gsuo) | =O(al).  (4.3:6)
N N Ny No

The mean-field-randomness condition (MF) is clear, since (dropping the superscript since there is
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only one matrix) we have

NEY (1465 e -
Ny U+ (N% i) if i, ke I,
NgLeg,

Sip =
gk N1 N2

iijIl,kGIQ OI‘jEIQ,kEII,

NEU (1468, oo
752(]\]22 i) if ik e Ip.

Now we check the regularity (R) of the MDE solution. In this context, the operators .%; : CV =2 — C

defined by [35, (1.15)] have the form

NE&) i
NN dken, Tk ifi €I,

N S e (146,
kel )Tk +
) = { N Tl

Ne' ¢! Nel .
W}V;Zkeh rk+T§Ek€IQ(1+6ik)rk lf’L S IQ.

The appropriate MDE [35, (1.16)] is a system of N — 2 coupled scalar equations, with solution
m(u,z) € CV~2, and we write uy for the measure thus obtained. To establish regularity of uy,

we think of the N — 2 coupled scalar equations equivalently as a single MDE over matrices in

C(N72)><(N72), by deﬁning Sy : (C(N72)><(N72) N (C(N72)><(N72) by
Sn(T] = diag(#1[diag(T)], . . ., SN—2[diag(T)]).

In fact, one can check that Sy is the same as the operator Sy defined in (4.3.1). Then we consider

the problem
Id+(zId —An(u) + SN [Mn(u, z)]) My (u, z) =0 subject to Im Mp(u,z) > 0. (4.3.7)

But now My (u, z) := diag(m(u, z)) exhibits a solution to (4.3.7), so we can think of py(u) equiv-
alently as the measure obtained by solving this matrix version of the MDE.
It is easy to show that each Sy preserves the cone of positive semidefinite matrices, and that Sy

is self-adjoint with respect to the inner product (R, T) = Tr(R*T'). The other regularity properties
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of Sy established in Lemma 4.3.3 let us apply [5, Propositions 2.1, 2.2], which give (a) that each
un (u) admits a density py (u, -) with respect to Lebesgue measure; (b) that each puy(u) is supported

in [—r(u), £(u)], where r(u) = supy [[An(u)] + 2(supy [|Sn )"/

satisfies sup,epp (o) k(u) < 00
from (4.3.2) and (4.3.6); and (c) that each un(u,-) is Holderian, with a Holder exponent that is
universal and a Holder constant that is uniform over u € Br(0). These three conditions ensure
that the densities are bounded, uniformly over u € Br(0), which finishes checking the regularity

assumption (R).

To check (4.3.5), we note that Wy = Hy(0), and that by the above discussion uy(0) is sup-

ported in [—2+/supy SN[, 2v/supy [[Sx]]]. Then [6, Theorem 2.4, Remark 2.5(v)] gives

C
P(Amwvzv) < 2, fup S| - 1) < 5100

for some constant C, which suffices. ]

Lemma 4.3.5. The measures poo(u) discussed in Remark 4.2.2 are well-defined. They admit
densities that are bounded and compactly supported locally uniformly in u, and for each R there
exists k with

sup Wi(pn(u), poo(u)) < N7F. (4.3.8)
UEBR(O)

Furthermore, there exists C > 0 such that

E[|det(Hy (u))]] < (C max(]ul, 1)) (4.3.9)

Finally, for every R and € we have

: ! Pldpr (7 o0 = —o0. 4.3.10
N2 Nlog N 08| Sup (dBL(fut g () Moo (1)) > €) ~ ( )
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Proof. With S} as in (4.3.1), consider the following MDE over matrices in C(N=2)x(N=2),
Id+(z1d — Al (u) + Sy [My (u, 2)] )My (u,z) =0 subject to  Im My (u,z) > 0. (4.3.11)

One can check that S§ preserves the cone of positive semidefinite matrices and that it is self-
adjoint with respect to the inner product (R,T) = Tr(R*T). Thus this problem has a unique
solution M (u, z).

In fact we can write M (u, z) much more explicitly. In (4.2.6) we wrote an MDE-type problem
for two N-independent scalars m;(u, z) and ma(u, z). Now we prove existence and uniqueness of
solutions to that problem: Since S} maps into diagonal matrices, we can see directly from the
MDE (4.3.11) that M (u, z) must be diagonal. By looking at the MDE componentwise, we see
that the entries on the diagonal can only take two values, which we will call mq(u, z) (for the first
Ni — 1 entries) and ma(u, z) (for the last Ny — 1 entries). With this information, writing (4.3.11)
out in components shows that {m;(u, z), ma(u, z)} is a solution to (4.2.6). Uniqueness for (4.2.6)

follows from uniqueness for (4.3.11), since one can check that

M]/V(u7 Z) = dlag ml(u7 Z)7m1(u7 Z)a e '7m2<u7 2)7 m?(u7 2)7 s

N1—1 times No—1 times

exhibits a solution to (4.3.11) whenever {mi(u, z), ma(u, z)} solves (4.2.6). Thus (4.2.1) tells us

that

N_2m1(u,z)+ N5

N Tr(Mpy (u, 2)) = ma(u, z) = ymi(u, z) + (1 — v)ma(u, 2)

N -2

is actually independent of NV, and we write poo(u) for the measure with this Stieltjes transform.
Using the regularity of S} established in Lemma 4.3.3, the same arguments as in the proof of

Lemma 4.3.4 tell us that each pioo(u) admits a compactly supported Holderian density pioo(u, ) with

respect to Lebesgue measure, and that the support, the Holder constant, and the Holder coefficient

can all be taken uniform over u € Br(0).
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Now we prove the distance estimate (4.3.8). The general result [35, Proposition 3.1] reduces
this problem to estimating the difference between the Stieltjes transforms, and [36, Lemma 3.1]
provides a general technique for doing this, assuming inputs which we verified in Lemmas 4.3.3 and
4.3.4.

The proof of the determinant estimate (4.3.9) follows [36, Lemma 4.4], using (4.3.6). The proof

of the concentration estimate (4.3.10) follows [36, Lemma 4.5]. O

Lemma 4.3.6. For every e >0 and R > 0, we have

Jimint | P(Spec(Hy(w) © [L(uoo(u)) = . (oo (u) + £]) = 1 (4.3.12)

and in fact the extreme eigenvalues of Hyn(u) converge in probability to the endpoints of poo(u).

Proof. In the proof of Lemma 4.3.4, we showed that the measures py are exactly those given by the
MDE for the matrices Hy(u). In the same way, one can check that the measures po, are exactly
those given by the MDE for the matrices H)(u); this is why we introduced those matrices. The
rest of the argument is exactly as in the proof of [36, Lemma 4.6]: it uses the local law of Alt et
al. [6] to localize the spectrum of Hj,(u) near the support of pioo(u), then Lemma 4.3.1 to relate
Hy to HY, and finally (4.3.10) to show that the extreme eigenvalues of Hy do not push inside the

support of fieo(u). O

Lemma 4.3.7. With G.. as defined in [35, (4.5)] and G as defined in (4.2.4), we have that each

Gie is convex, that Gy1 has positive measure, and that

UGie=6 and Hin (U g+g> =H,NG for allt.

e>0 e>0

Proof. Convexity for G, is proved exactly as in [36, Lemma 4.7].

For simplicity, we restrict ourselves to w in the quarter space

Q = {(uo, u1,u2) : ug > 0,uz = 0}.
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For u € Q we have

N N 28! ¢!
Amin (An(u)) = min{N(alul — &lug), F(aguz — féuo)} > ug min{gl, fi
1 2

5 1 ’7} =! —FKhbsglUp-

Combining this with (4.3.5), we find

lim inf Apmin (Hn (©)) = —Kpsguo — 2, [sup ||Sn || — 1
N—00 N

for u € Q. Along with the convergence in probability of Apin (Hy (1)) to 1(peo(u)) of Lemma 4.3.6,
this shows that G, has positive measure.
Finally, we note that the inclusion U.50G+c C G is clear, and that G is closed by [35, Lemma

4.6]. To show the reverse inclusion, write e; = (1,0,0); then for 6 > 0 we have Ax(u — de1) >

An(u)+"52£51d, so that by the convergence in probability of Lemma 4.3.6 we have 1(poo(u—0de1)) =
1(poo(u)) + =226, This completes the proof of the equality U.G - = G. The version intersected
with H; is an exercise in point-set topology, since U.G . is convex as a union of nested convex sets,

H,; is a half-space, and their intersection has non-empty interior by the arguments above. O

Proof of Theorem 4.2.1. By the discussion after the proof of Lemma 4.3.2, to show (4.2.3) it suffices

to show

lim —lo / E[|det (Hy (u))]] du = sup Spsglu],
N—oo N ueH;
lim —lo / El|ldet(Hy(u))|] du = sup Speglul.
N—oo N u€R3

This is a direct consequence of [35, Theorem 4.1], whose conditions we have checked in the preceding
lemmas, with the choices o = 1/2, p = 2 (recall N = (N — 2) + 2 is two more than the size of
Hy(u)), and ® =R? or ® = H;.
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Similarly, to prove (4.2.5), it suffices to show

1 ul|?
timsup - log [ eV B det(Hy () Ly > 0ldu = sup Speglul
Nooo N H uEGNH,

t
1 [
lim sup — log/ e N2 E[|det(Hn(u)| 1y () = 0] du = sup Spsg[u].
N—oo N R3 ueg

This is a direct consequence of [35, Theorem 4.5], whose conditions we have also just checked, with

the same choices of parameters. O

Proof of Corollary 4.2.4. Directly from the MDE (4.2.6), we obtain the symmetry
foo(—Uy A) = fico (U, — ).

In particular, p(0,A) is an even function of A, so its left edge is strictly negative, hence u = 0 is
not an element of Gpyre. Since Gpure has the form (—oo, —E(p, ¢,7)] we conclude —Ew(p, q,7) < 0.

Since ¥™in(t) = constant +supy,eg, ,,.n(—oo,] Sbsglu] from (4.2.5), we conclude that ymin(¢) stabilizes

at t = _Eoo(p7qa’7)

For each e, consider the half-space

He = {(uo,u1,u2) € R : up > —Foo(p, 4,7) + £}
By Markov’s and a Kac-Rice argument, we have

P(Crti"™ ((— Eoo(p, 4,7) +€,00)) 2 1) < E[Crtif™ ((— Exc(p, 4,7) + €, 00))]]

= (N, No) [ e SRl det(H ()11, 0]

€

In the companion paper [35, (4.5)] we considered a sequence of nested sets G_;5 defined by

G5 ={u € R™: poo(u)((—00, —6)) < 6}
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Since poo(u) depends only on ug in the pure case we are currently considering, each G_s is of the
form G_5 = {ug x R? : ug € Gpure,—s } for some set Gpure,—s C R. In fact, we claim that Gpyre,—s is
an interval of the form

Gpure,~5 = (=00, f(9)]. (4.3.13)

Assume this claim momentarily. From the definitions one can see that Ng~oG_s = G, and thus
(4.2.7) tells us that lims)o f(6) = —FEos(p,q,7). Hence there exists a small § = d(¢) > 0 with
f(9) < =Ex(p,q,7) + &. For this § we therefore have H. C (G_s)¢, but we showed in [35, Lemma
4.7] that

li L
Ngnoo N

]2
log /(g : e_NTEHdet(HN(u))|1HN(U)>O] du = —oo
_5)¢
for every 0 > 0. This completes the proof, modulo (4.3.13).

Now we prove (4.3.13). Since oo ((ug, u1,u2)) depends on ug only, we abuse notation and write

loo(ug). Notice that pe(ug) is the limiting empirical measure of the random matrix Wy + uo By,

where
Ng’l 0
By = An(1,0,0)=—( ™ .
0 N;

has strictly negative eigenvalues. The Courant-Fischer variational characterization of eigenvalues
gives that, for each i € [1, N], the ith eigenvalue of Wy + ugBy is a non-increasing function of uyg.
Thus

%#{Z : )\i(WN + UOBN) < —5}

is almost surely non-decreasing in wug, hence its N — +oo limit peo(up)((—00, —9d)) is also non-
decreasing in ug. This shows that G_;5 is a single interval containing arbitrarily large negative
values. From its definition and continuity of the map u — puoo(u) (see the proof of [35, Lemma

4.6]) one can see that it is closed, which completes the proof of (4.3.13). O

Remark 4.3.8. We remark briefly on the restriction £ > 0 and & > 0, which is equivalent to
“neither a pure (1,q) spin nor a pure (p,1) spin.” In order to apply our Laplace-method arguments,

we need the measures fis(u) to admit densities. We know of two strategies to show that a measure
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induced by the MDE admits a density: Either check that the stability operator S in the MDE is flat
and import results of [5] (which is our strategy here), or “by hand,” meaning manipulate the MDE
in a clever way to show that the solution My (u,z) satisfies supy,, , [|Mn(u, 2)|| < oo (which is our
strategy for the “elastic-manifold” model in [36]).

If min(&Y,&5) = 0, the stability operators Sy and Sy are not flat: For example, if ! =0, then

T1 0O 0 0 1
SN = P

00 0 ]1\\[51155 Tr(T1:1)1d —I-]Xi% diag(7T11) k(N —2)

The missing piece is thus to establish reqularity “by hand,” which we do not know how to do for

this model.

188



Chapter 5

Large deviations for extreme
eigenvalues of deformed Wigner

random matrices

This chapter is essentially borrowed from [121], which appeared Electronic

Journal of Probability.

5.1 INTRODUCTION

5.1.1 Deformed ensembles: typical behavior.
In this paper, our goal is to prove a large deviation principle (LDP) for the largest eigenvalue

of the random matrix

W
VN
Here % lies in a particular class of real or complex Wigner matrices. Specifically, we will ask
that the laws of the entries of W have sub-Gaussian Laplace transforms with certain variances,

Xy = + Dy. (5.1.1)

and that these laws satisfy concentration properties. The archetypal examples of this class are the
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Gaussian ensembles (GOE and GUE). We also assume that Dy is a deterministic matrix whose
empirical spectral measure tends to a deterministic limit up and whose extreme eigenvalues tend
to the edges of up. In all of our proofs we will assume that Dy is diagonal, but by rotational
invariance, our results hold for the deformed Gaussian models even when Dy is not diagonal. More
details on our assumptions will be given in Section 5.2.

If we write A\;(M) < -+ < Ay(M) for the eigenvalues of a self-adjoint matrix M and fips =

% Zi]\il dx, () for its empirical measure, it is well-known that

,aXN — psc B up,

both almost surely and in expectation, where pg. is the semicircle law normalized as pg.(dx) =
%\/(4 — 22)4 do and p B v is the free convolution of the probability measures p and v [131, 153].
If 1 is a compactly supported measure on R, we write 1(u) and r(u) for the left and right

endpoints, respectively, of its support. For some special cases of our model, it is known that
AN(XN) = r(pse Bup) almost surely.

New cases will be a corollary of our large deviation principle; see Remark 5.2.6 below for details.
Our model also exhibits edge universality for many choices of Dy; that is, the fluctuations
of An(Xn), rescaled appropriately, are known to follow the Tracy-Widom distribution. This was
first established by [140] for the deformed GUE, if fip, — up quickly (d(fipy,up) = O(N—2/37¢)
is enough, where d is defined in Equation (5.1.5)) and without outliers. The convergence-rate
assumption was removed by [65], which also allowed a finite number of outliers in a controlled way,
under a technical assumption implying that pup does not decay too quickly near its edges. The

assumption of Gaussianity was removed by [115], under a similar technical assumption on pp.

5.1.2 History of large deviations in random matriz theory.

The history of LDPs for random matrix theory is fairly sparse. The first result, from [42], is
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for the empirical measure of the Gaussian ensembles. The first LDP for the largest eigenvalue of
a random matrix ensemble, namely for the GOE, appeared in [37]. We mention also [79] for the
largest eigenvalue of thin sample covariance matrices, and [54] for the empirical measure and [14]
for the largest eigenvalue of Wigner matrices whose entries have tails heavier than Gaussian.

There are also several results for the large deviations of deformed random matrices. For exam-
ple, the paper [104] studied large deviations of the empirical measure of full-rank deformations of
Gaussian ensembles, making rigorous a prediction from [119]. The largest eigenvalue of a rank-one
deformation of a Gaussian ensemble was studied by [118]; this result was recovered as the time-
one marginal of a large deviation principle for Hermitian Brownian motions in [70]. Finite-rank
deformations, rather than rank-one deformations, were covered in [45].

Our work builds on the recent papers [99] and [102]. These works use techniques discussed
below to establish LDPs for extreme eigenvalues, treating respectively sharp sub-Gaussian Wigner
matrices and the free-convolution model A + UBU* (with U Haar orthogonal or Haar unitary).
This method was also adapted in [50] to study joint large deviations of the largest eigenvalue and of
one component of the corresponding eigenvector for rank-one deformations of Gaussian ensembles.
Very recently, [15] adapted this method to study non-sharp sub-Gaussian Wigner matrices; see

Remark 5.2.2 below for a precise explanation of this terminology.

5.1.3 Large deviations for ensembles with full-rank deformations.
In many large-deviations proofs, one wants to tilt measures by a Laplace transform. The insight
of the paper [99] was that the appropriate Laplace transform in our context is the so-called (rank-

one) spherical integral

E,[e]VO(e:Me)), (5.1.2)

Here M is an N x N self-adjoint matrix, § > 0 is the argument of the Laplace transform, and the
integration E,. is over vectors e uniform on the unit sphere SV—1 (we take SN=1 c RN if M is real,

or SV ¢ CV if M is complex, so that (5.1.2) is real). If M is a random matrix, then (5.1.2) is a
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random variable. This is a special case of the famous Harish-Chandra/Itzykson/Zuber integral.
For an LDP for the model (5.1.1), we encounter two technical challenges. If we write Py for
the law of X and Ex, for the corresponding expectation (and define Eyy, in the obvious way),

then the first challenge is the computation of

— Nole,Xne)y 1o L VNO(e,Wne)  NO(e,Dne)
A}gnoo I log Ex, [Ecle = ]\}1_13100 NlogIEe[EWN[e ]-e ] (5.1.3)

The term Ex, [E.[eN?©X~€)]] appears as a normalization constant when tilting the measure, so
its logarithmic asymptotics appear as part of the rate function. To understand these asymptotics
when Wy is not Gaussian, we use the method of [99, Lemma 3.2] to understand Eyy,, [ema(QWN ]
pointwise for unit vectors e that are delocalized in an appropriate sense. We combine this with the

new result (see Lemma 5.4.4 below)

9<e,DNe>] 0

E. |1 iz N
for 8 small enough depending on pp, A}gnoo N log el e%e:?;?\lmfj;]ve>]

The qualifier “for # small enough” means that, via this argument, we can only obtain large-
deviations asymptotics of events that localize Ay (Xy) below some critical threshold x., which
depends on the deformation pup only. We show z, > r(psc B pup) with strict inequality except in
degenerate cases, and that x. can be infinite. For example, x. = +0o when pp is the uniform
measure on an interval. For the Gaussian ensembles, the limit in (5.1.3) is directly computable for
every 6 > 0 without recourse to this delocalization problem, so our results for those models are
stronger.

The second difficulty (in some respects the main one) is that we need a concentration result of
the form

1 . _
lim NlogPN(d(uXN,psc Bup)>N")=—c0 (5.1.4)

N—oo

for kK > 0 small enough, where d is defined in (5.1.5). This result is Lemma 5.5.3 below. With

pse B pp replaced with E[fix,], this is standard concentration of linear statistics [103], easily
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extended to our model. To approximate E[fix, ] with psc B up, we use local laws for deformed
ensembles [116, 115, 75]. Our argument is slightly technical, since these local laws let us approximate
Elfixy], not directly by ps. B pp, but by a measure close to ps. B fip,, so several intermediate
comparisons are needed.

The organization of the paper is as follows: In Section 5.2, we state our assumptions and
main result with commentary and examples. In Section 5.3, we provide background on spherical
integrals, introduce the tilted measures, and provide a high-level overview of the technique as well
as proofs of weak-large-deviations upper and lower bounds. These arguments rely on several key
lemmas, the proofs of which make up the remaining three sections. In Section 5.4, we address the
first technical issue discussed above. In Section 5.5, we prove exponential tightness for our model,
then address the second technical issue discussed above. In Section 5.6, we establish properties of
the rate function. Throughout, our results are stated for both the real and complex cases, but we

only give proofs in the real case. The proofs in the complex case require only minor modifications.

Conventions. We use the shorthand § for the symmetry class at hand: 5 = 1 refers to real
symmetric matrices and 5 = 2 refers to complex Hermitian matrices. Our norm || M|| on matrices

is the operator norm [|[M|| = supj,,=1 [[Mul|2. We define

1 llip = sup L& =S W
zFy |z —y

for test functions f : R — R, and our metric d on probability measures will be the Dudley distance

(also called the bounded-Lipschitz distance), given by

d(p,v) = sup{‘/fd(# —v)

:wmm+wmw<§. (5.1.5)

Recall that this distance metrizes weak convergence.
Finally, we recall the Stieltjes transform and the Voiculescu R-transform of a compactly sup-

ported probability measure. If u is a probability measure on R the convex hull of whose support is
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[a, b], then we will normalize its Stieltjes transform G, as

Guly) = [ 44

y—t

If we write G (a) = limyy, Gu(y) and G, (b) = limy, G, (y), then it can be shown that G, is a
bijection from R\ [a,b] to (G,(a), G, (b)) \ {0}. We will write

K, : (Gu(a), Gu(0) \ {0} > R\ [a, 1)

for its functional inverse, and write

for its Voiculescu R-transform, which linearizes free convolution: R,m, = R, + R,.

5.2 MAIN RESULT

5.2.1 Assumptions. We first present our assumptions on Dy, which will be made throughout,

even though we will only state them in the presentation of the main results.

Assumption 1. The matriz Dy is real, diagonal, and deterministic, and its empirical measure

fipy tends weakly as N — oo to a compactly supported probability measure jup. Furthermore,

AN(Dn) = x(pp),

A (Dy) = 1(kp)-
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Assumption 2. There exist C' > 0 and g9 > 0 such that
d(fipy, D) < CN0.

Remark 5.2.1. We emphasize that pp is allowed to be quite poorly behaved. For example, it can
be singular with respect to Lebesgue measure. It can also have disconnected support. Notice that
Assumption 2 is fairly mild. For example, if up has a density and the entries of Dy are the %—
quantiles of up, then in fact d(fipy,pp) = O(%) If the entries of Dy were obtained from i.i.d.
random variables, we would have d(fip,,pup) = O(\/l—ﬁ)

In fact, the proof of Lemma 5.5.6 below shows that, instead of Assumption 2, it suffices to bound
the difference between the Stieltjes transforms of fip, and pup at distance N=° from the real line,

for & > 0 small enough.

We will write the Laplace transform of a measure p on C as

T,(t) := /e%(za,u(dz).

If in fact p is supported on R and ¢ is real, this reduces to the familiar

u(t) = [ en(da).

We assume that % is a Wigner matrix, by which we mean that its entries are independent

up to the self-adjoint condition. Our assumptions on the Wigner part are named, rather than
numbered, to emphasize that our results apply under either of them, rather than both of them.

Gaussian Hypothesis. The matrix % is distributed according to the Gaussian Orthogonal

Ensemble if § = 1, or the Gaussian Unitary Ensemble if 3 = 2. (That is, the law of Wy on the

space of symmetric/Hermitian matrices has density proportional to exp(—Ztr(W3)/4).)

SSGC Hypothesis. (This labelling stands for “sharp sub-Gaussian and concentrates.” It matches

the assumptions of [99].)
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Write u” for the law of the (7, j)th entry of Wy.

1. Assume both of the following.

— The first and second moments match those of the relevant Gaussian ensemble. In our

normalization, this means that for every N € N and 4, j € [1, N], if 5 = 1 we have

/a:ufvj(dx) =0, /33 u”(dx) =1+ 4y,

whereas if § = 2 and i # j we have

[ R = [S@uEe) = [RE8Eu5 ) =0,
[ RPN @) = [ ) = 5.

If 5 =2, then ,ufvz is supported on R, with fxuf\;(da:) =0and [2? ,u”(dx)
— For every N € N and 4,5 € [1, N], the measure ufvj has a sharp sub-Gaussian Laplace

transform:

teRif =1 t21 Oii
for all : zﬁna)gemp<||<‘*@”>. (5.2.1)

teCifB=2

2. In addition, assume one of the following concentration-type hypotheses.

— There exists a constant ¢ independent of N such that, for all N € N and all ¢,5 € [1, NJ,

the law ,uf\g satisfies a log-Sobolev inequality with constant c.

— There exists a compact set K independent of N (real if 5 = 1, or complex if 5 = 2) such

that, for all N € N and all 4,5 € [1, N], the law H%’ is supported in K.

Remark 5.2.2. A list of examples satisfying the SSGC Hypothesis is provided in [99]. Among these
examples are real matrices whose entries follow the Rademacher law (5 1+ d41) or the uniform

law on [—/3,V/3] (appropriately rescaled on the diagonal).
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In the literature, it is common to call a centered measure p on R with unit variance sub-Gaussian
whenever

1
A :=2sup 2 log T),(t)
teR

is finite. We emphasize that we are asking for more: in (5.2.1) we require A =1 (off the diagonal,
with appropriate modifications otherwise), and following [99] we call such measures sharp sub-
Gaussian. This is a strict subclass; for example, the law of %BG, where B ~ Bernoulli(p) and
G ~ N(0,1) are independent, has unit variance but A = 1/p. This example appears in [15], which

treats the general case A > 1, with zero deformation.

5.2.2 Main result

Definition 5.2.3. For a compactly supported measure v, a parameter > 0, and a real number

M > x(v), define

SI Ru(t)dt if0< 30 <G (),

JB (v, 0,.4) = (5.2.2)

0.4 — §[1+10g(20)| = § [log(a — y)v(dy) if 20> G (A).

(If # = x(v), we recall our convention G,(x(v)) = limy ) Gu(y), which is possibly infinite.)
In Section 5.3.1 we will explain how this function arises as the limit of appropriately normalized
spherical integrals.

Forz > r(psc Bup) and 0 > 0, we define

2

B
and then set

+00 if v <r(pse Bup),
I(ﬁ)(:c) -

SUPg>0 I('B) (.I', 9) @f Tz r(psc H ,UD)-
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We will show below that
1@ (z) = 21M ()

for all measures pup.

To state our result, we will need the following critical threshold.

Definition 5.2.4. Given the compactly supported measure pp, define the real number x. by

F(1) + G (£(1D)) 1 Guup (x(111)) < 00,
Te = zc(pip) =

400 otherwise.

It will be shown in Proposition 5.6.1 below that x. > r(psc B pup), with equality if and only if an

inequality involving the Stieltjes transform of up degenerates.
The main result of the paper is the following:
Theorem 5.2.5. Suppose that Assumptions 1 and 2 hold.

1. If the Gaussian Hypothesis holds, then the law of the largest eigenvalue An(Xpn) satisfies
a large deviation principle at speed N with the good rate function I(B)(ZL‘). By rotational
invariance, we have the same result when Dy is not diagonal but simply symmetric (if 5 =1)

or Hermitian (if B = 2) and satisfies the rest of the requirements of Assumption 1.

2. If instead the SSGC Hypothesis holds, then the law of the largest eigenvalue An(Xn) satisfies
what we will call a “restricted large deviation principle on (—oo,z.)” at speed N with the good
rate function IP) (x). In fact the restriction is just for the lower bound; the upper bound is

unrestricted. This means the following:

— For every closed set F' C R, we have

1
lim sup — log Py(An(Xy) € F) < — inf 19 (z). (5.2.3)
Nooo N z€F
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— For every open set G C (—o0,z.), we have

1
im inf — > — inf 1) (x). 2.
l}\r}iglof N logPy(ANn(XN) € G) > %IE%I () (5.2.4)
3. In particular, if the SSGC Hypothesis holds and pp is such that x. = 400, then the law of
the largest eigenvalue Ay (X ) satisfies a large deviation principle at speed N with the good

rate function IP)(x) in the usual sense.

Remark 5.2.6. See Proposition 5.6.1 below for a more in-depth study of the function I (z).
There, it is shown that I () has a unique minimizer at x = r(ps. B up), where it takes the value
zero. In particular, if the Gaussian Hypothesis holds, or if the SSGC Hypothesis holds and pup is

such that x, = +o00, then
AN(XN) = r(pse Bup) almost surely. (5.2.5)

This result appears to be new in the real case when ps. B pup is multicut, and in the complex non-
Gaussian case when ps.Bup is multicut and (Dn)F_, has “internal outliers” between the connected
components of supp(up) that persist as N — oo. (Recall that we forbid “external outliers” by
assuming AN (D) — r(up) and \i(Dn) — L(up).) In the literature Equation (5.2.5) appears as
an easy corollary of edge universality results, or as a special case of BBP results when the deforming
matrix Dy has no external outliers. For example, it follows from [65] for deformed GUE, possibly
multicut with internal outliers, under some assumptions about the decay rate of up near its edges;
from [115] for general real or complex noise if up is such that psc B pp is supported on a single
interval with square-root decay at its two edges; and from [33] in the complex (and possibly multicut)

case with no outliers. Of course, all of these papers achieve much more.

Remark 5.2.7. The proof of the “restricted LDP,” i.e., of Equations (5.2.3) and (5.2.4), fol-
lows in the classical way from estimates of small-ball probabilities via a weak large deviation

principle and exponential tightness, except that we can only lower-bound small-ball probabilities
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Pn(JAN(XN) — x| < 0) for x < x. rather than v € R. However, we can upper-bound these proba-
bilities for all x (see Theorem 5.3.4); this is the reason for the different restrictions on F and G in

(5.2.3) and (5.2.4).

Remark 5.2.8. Of course, one would prefer to write the rate function mon-variationally, and
we can do this when the argument is at or above the critical threshold x.(up). Proposition 5.6.1

shows that, for all x > r(ps. B up), the supremum in the definition of I'®)(x) is achieved at a

unique 05’5). For x > xz. (which is relevant for the Gaussian case), this 0;6) is given explicitly as
0 = 8(x — x(up)); thus if = > z(up),

r—T 2
10() = 5[(2(‘”)” — [ o8~ ) B ) ) + [ To8(x(ra0) ~ y)uD(dy)] .

(If z.(up) < oo, then [log(r(up) — y)up(dy) < 0o.) But for subcritical x values, o) is defined
implicitly in the proof of Proposition 5.6.1 as the unique solution of the constrained problem

2
B

2

009 + K, (599@) = subject to 0 e (gc:psﬂw(r(pscaa ,uD)),gGuD(r(uD))) (5.2.6)

We have not found a way to solve this constrained problem explicitly, nor to write 1) (, 9;(,;5)) explic-

itly at its solution. If the domain of 0) in the constraint were instead (0, ngscaguD (r(pseBup))),
the equation would simplify to KPSCEMD(%QJ(CB)) = x, which has the solution o) = gGPscaﬂﬂD ().
But K, @, (-) is not generally guaranteed to exist for arguments larger than G, mu,, (r(pseBup)),
and even when extendable it may not be globally invertible.

Thus our rate function remains implicit for subcritical T values. Nevertheless, in some simple

cases the constrained problem can be solved explicitly; two examples are given below in Sections

5.2.8 and 5.2.4.
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Remark 5.2.9. If Dy =0, then x. = 400,

400 ifx <2 400 ifx <2
15) (z) = —

Sup@}(){‘](ﬁ)(psc)gvx) - %} fo > 2 gf; \/t2 —4dt ’Lf.fL‘ 2 2,

and we recover [99, Theorems 1.5 and 1.6], which in particular includes the classical LDP for the
Gaussian ensembles. (The last equality in the above display is true by [99, Section 4.1].) Notice
that we get the same rate function if Dy is not identically zero but rather ||Dy|| — 0 sufficiently

quickly.

Remark 5.2.10. One wants to recover large deviations for BBP-type problems, so it is tempting
to conjecture that, if the largest eigenvalue of Dy tends not to r(up) but to some p > r(up), then

an LDP should hold for A\n(Xn) at speed N with the good rate function

- 400 if v < r(pse B pup)
7®) (z) =

supg>o{J P (psc B pp, 0, x) — % —JB®(up,6,p)}  otherwise.

But, at least for certain simple situations, such a conjecture would be wrong. For example, suppose
that % is distributed according to the GOE (if f = 1) or the GUE (if p = 2), that up = do
(so that psc B up = psc), and that Dy has N — 1 zero eigenvalues with one spike at, say, 2 for
concreteness. Then it is known [118, Theorem 1.2] that An(Xn) satisfies an LDP at speed N with

the good rate function

+00 T <2

7®) (z) = ,
%fgvz?féldzfﬁ(xf%) +§{x2 (%) } x> 2.
(The published rate function has a typo; it is corrected in the v2 arXiv posting. We also normalize

the semicircle law differently.) Notice that this vanishes uniquely at x = %, which lies outside
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supp(psc) — this model is past the BBP phase transition. But in this situation we can compute

+oo T <2

~
=
&
Il
)
\]
N
8
N
oot

~
=
~—~
8
S—
8
WV
Njot

It is likely that our method could be extended as in [102] to models where limy_ o0 AN(DN) is a
spike below the BBP threshold, i.e., such that still A\N(Xn) — r(psc B up) almost surely. But a
new idea is needed beyond the BBP threshold.

5.2.3 First example (z. < c0). If

1
1755} (dx) = \/mlxe[fﬂyﬂcr} dz

2mo?

for some parameter ¢ > 0, then psc H pp is again semicircular, scaled so its support lies in

[—2V02 +1,2v/02 +1]. The constrained equation (5.2.6) can be solved explicitly, and writing

r=r(psc Bup) =2vVo?+1 and z. =20 + % we can calculate

+00 ife<r
(8) _ zy/22—4(1+02) 2v/1F02 .
' (x) B {4(14_02) + 10g<x+ m24(1+02))] ifr<z<z,
z—20)2 xr/22—4(1+02)—2? o .
ﬁ|:( 1 ) + 8(1+02) +%log(w+:p22—4(1+02)> +5:| lfI‘}IC.

Notice that 1) (z) is C2 but no better at z., which is perhaps surprising. Figure 5.1 plots this
function when 8 =1 and o = 1 (i.e., when up is the usual semicircle law supported on [—2,2]).
Here r(psc B up) = 22 ~ 2.83, z. = 3, and 1) (z.) =~ 0.03 - 8. Under the SSGC Hypothesis, we
would be able to estimate, say, Py (An € (2.9,2.95)) but not Px(An € (2.9,3.1)).
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r(psc H up) ~ 2.83

xC = 3

[ Ll Nl LN (VN

N|~3

Figure 5.1: Sketch of the rate function when § =1 and up = pgc.

5.2.4 Second example (r.= oc). Now suppose
1
HD = 5(5—a +d1a)

for some parameter a > 0. Here z.(up) = a + G, (a) = 400, so all z are subcritical; that is,
we can estimate any probability Px(Ay € A) under either the SSGC Hypothesis or the Gaussian
Hypothesis. Our computations use the known result

(40 — 1+ V/8a% +1)%/?

r(pse B up) = eV 11— 1) =:r(a). (5.2.7)

In the physics literature this dates back to [157, Equations (55), (56)]; it was established in the
mathematical literature in [51, Equations (3.5), (3.6)] (for a > 1), [8, Section 1] (for a < 1), and
[52, Section 7] (for a = 1). The latter three papers establish that the measure ps. B up undergoes
a phase transition at a = 1. When a > 1, the support of psc H pup consists of two intervals; when
a = 1, these intervals meet at zero, where the density has cubic-root decay; and when a < 1 the
support is a single interval, on the interior of which the density is strictly positive. (This set of
three papers also establishes universality of correlation functions.) We emphasize that our results

apply to all a > 0.
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The details of the computations are given in Appendix C, but the result is this: With

(=1 + 4a® + V1 + 8a2)3/2 \/(1 +8a?)(—1 — 4a? + 8a* + V1 + 8a?)

ela) = 3v2a(—1+V1+8d2) 3v2a(—1+ /1 + 84?) ’ (5.28)
d(y) = d(a,y) = 9y + 18a%y — 2y (5.2.9)

©/—4(3 = 3a% — y2)3 — (9y + 18a2y — 2y3)2’
we have

2

105 e T )

S
3

x 9 1
- 2/ 2 {t — V=3 +3a2 + 2 sin<§ -3 arctan(d(f)))] dt

(a) 3

———— 2
2v3 +33a2 + 2% sin(é arctan(d(:n)))]) - a2]
— (c(a)? + log((x(a) — c(a))? ~ GQ))]

for x > r(psc B up). Figure 5.2 plots this function at the critical parameter a = 1 (so that

r(psc B pip) = 232) when 8 = 1.

e Ll VL VY

T

~

3

DUt
[NCIEN|

r(pse B pup) ~ 2.60

Figure 5.2: Sketch of the rate function when § =1 and up = %(51 +0-1).

Question 5.2.11. Does the mechanism driving the deviations {An(Xn) =~ x} change as x passes
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the critical threshold x.? Specifically, can one formalize and prove the notion that, with large prob-
ability, while the eigenvector corresponding to Ay is delocalized under the above event for subcritical

x values, it localizes for supercritical x values?

5.3 PROOF OVERVIEW

5.3.1 Spherical integrals. Given a self-adjoint N x N matrix X and 6 > 0, consider

I](\?) (X, 9) — Ee75[6N0<e’X6>],

1
JP(x,0) = o 19 (x,0).

Recall that E, 3 is integration over vectors e uniform on the unit sphere, understood as SN-1 c RN
if 3 =1o0r SN c CN if B = 2, so that I](\?)(X,H) is real and nonnegative for both symmetry
classes. We emphasize again that E. g only averages over the unit sphere, so if X is random then
I](\'?) (X,60) and J](\'?) (X, 60) are random variables.

If {Xn} is such that fix, has a weak limit v, then we might hope that J](\?) (Xn,0) also has a
limit depending on v and 6. This is so; but the limit also depends on Ay (Xy) if 6 is sufficiently

NO{e,Xe)

large. This should not be surprising, since the integrand e is maximized near the eigenvector

corresponding to Ay (X), especially for larger 6 values. Indeed, we have the following result.

Proposition 5.3.1. [101, Theorem 6] Suppose that the sequence (An)_, of self-adjoint matrices
is such that fia, — v weakly for some compactly-supported measure v, that \i(An) has a finite
limit, and that AN(ANn) — A for some real number 4 . (Notice that we are not assuming that A
is the right edge of v, but of course we must have 4 > x(v).) If 6 > 0, then

lim J(An,0) = TP (v,0,.4),

N—oo
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where JB) (v,0, 4) is as in (5.2.2).

5.3.2 Tilted measures and weak large deviations. Our general strategy will be to show a
weak large deviation principle, as well as exponential tightness. In the proof of the weak-large-
deviations lower bound for our measure of interest, we will actually need a weak-large-deviations

upper bound for the following family of measures.

Definition 5.3.2. Given 6 > 0, we consider the “tilted” measure IP’?V on N x N matrices (symmetric

if B =1, or Hermitian if B = 2) whose density with respect to the law Py of Xn is given by

By o 1P(x,0)
Py Exy (1)) (Xn,60))

Notice from the definition of I](Vﬁ) that P, = Py.

We will need the following asymptotics of the free energy for this measure, with proof in Section

5.4.

Proposition 5.3.3. Given the compactly supported measure up, define the threshold

8 r ) r 0
0B _ Hgﬁ)(up) _ 5Gup(x(ep)) if Gup(r(up)) < +oo, (5.3.1)

+o00 otherwise.

Under the Gaussian Hypothesis, choose any 6 > 0; or, under the SSGC Hypothesis, choose any
0o <0£5). Then

o1 62
im_ - log Exy (1Y) (X, 0)] = =+ (p, 0,7(up)).

|
N—o0

The reason for the appearance of Oﬁﬁ ) and Z. is this: Under the SSGC Hypothesis, we can only

give lower bounds for Ex,, [eN0{eXne)] = NOle.DneEy, [eVN0(eWNe)] when e is delocalized, since

we only have lower bounds for the Laplace transforms of the entries of W near zero. Informally,
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to understand the normalization constant in IP’?V we therefore need 6 to be such that

N9<e,DNe)] 6N0(e,DNe)}

Ee,,@[le delocalized € ~ ]Ee,ﬁ[

(8)

at exponential scale, which we can only prove for § < ¢ (in fact it probably fails for larger 6).
To establish the weak LDP lower bound, we need to show that the event {Any(Xx) =~ x} is likely
under IP’?V for some 8 = 6,. Under the SSGC Hypothesis, this is possible only if x is such that
0, < eéﬂ), and this turns out to be true if and only if x < z., where x. is as in Definition 5.2.4.

We split up the weak-large-deviations upper and lower bounds as follows:

Theorem 5.3.4. First, let © < r(psc B up). Under either Hypothesis, choose any 6 > 0. Then

1
lim lim sup — log]P’?V(]/\N(XN) — x| <6) = —o0.
=0 Nooo N

Second, let x > r(pse B up). Under the Gaussian Hypothesis, choose any 0 > 0; or, under the

SSGC Hypothesis, choose any 0 < 0 < 0((;6). Then

1
limsuplimsupNlog}P’?V(])\N(XN) — | <6) < —(I¥(x) — 1O (x,0)).

6—0 N—oco

Notice that [(B)(x, 0) = 0 for all measures up and all x > r(pscBup). Thus when § = 0 we recover

the weak large deviation upper bound for the measure of primary interest, under either Hypothesis.

Theorem 5.3.5. Under the Gaussian Hypothesis, choose any x € R; or, under the SSGC Hypoth-

esis, choose any x < x.. Then

1
liminflim'nfﬁlogIP’N(MN(XN) — | < 8) = -1 ().

—0 N—

5.3.83 OQutline. When estimating % log Py (JAN(XN) — x| < 6§) by tilting by spherical integrals,

one wants to estimate J](\f) (Xn,0) on the event {|An(Xn) — z| < d}. To localize J](\?) (Xn,0), one
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needs to control fix, . Therefore one wants to find a set
AL c {IAn(X ) — 2] < 6}

of matrices with controlled empirical measures (which will turn out to depend on some M > 1)

satisfying both of the following:

— On the one hand, Ai\{; is a continuity set for spherical integrals, in the sense that we have a

good enough understanding of J](\é)(T, 0) for T € .A%; to be able to estimate

1 ~NI®B)
NlogIP)N(.A%(;) ~ e NI,

— On the other hand, .A%; is not too much smaller than {|Ax(Xxy) — x| < 0}, in the sense that
1 1 u
Nlog]P’N(\)\N(XN) —z| <)~ N log Py (Azs)-

The next subsection first details the continuity result of [118], which helps us choose Ai\f[(; while
satisfying the first point, then states a proposition which we need to show that our choice satisfies

the second point.

5.3.4 Continuity of spherical integrals

Proposition 5.3.6. [118, Proposition 2.1] For any 0 > 0 and any k > 0, there exists a function
gro : RT — RT going to zero at zero such that, for any & > 0 and N large enough, if By and B}y are
sequences of matrices such that d(fipy, ip) < N™", |[An(Bn) — AN(BYy)| < 0, supy || Bn|| < oo,

and supy || By || < oo, then we have
I (BN, 0) = I (By,0)] < gio ().

This suggests that we introduce the following deterministic sets of N x N symmetric matrices.
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Fix once and for all a « satisfying Proposition 5.3.9, below, and write gg for 9% .05 then for any

z€R,6>0,and M >0, let
Ai\/,[é = {X : ‘)‘N(X) - $| < 57d(laX7pSc BH,UD) < N_Hv and HXH < M}
In the next few results, we discretize the measure ps. H up so that we can apply Proposition

5.3.6 and control J](Vﬁ)(XN, @) uniformly for Xy € A%;.

Lemma 5.3.7. Fiz x > r(psc Bup) and M > max(z, |L(psc B up)|). Then there exists a sequence

of deterministic matrices By with the following properties:
- An(BYy) ==,
— SUpn>1 Byl < M, and
= d(fipys psc B up) = O(1/N).

Proof. Given N, define the % quantiles {v; }§V21 = {VJ(N) ;-V:l of the measure ps. B pup implicitly by

I = (pue B up)(~00,7)).

(This is possible since psc B up admits a density [49, Corollary 2].) Then let

By = diag(y1, ..., YN-1, 7).

The distance estimate is easy to show, since d(-, -) is defined with respect to bounded-Lipschitz test

functions. O

Corollary 5.3.8. For every 0 > 0, x > r(psc B up), 6 > 0, and M > max(z + 6, |L(psc B up)|),
we have

limsup sup ‘J](vﬂ)(BN,G)—J(B)(pscﬁﬂupﬁ,w)(<go(5)-
N—oo BNGAQ/{(;
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Proof. Let {By}%_; be as in Lemma 5.3.7, so that d(ﬂB&,pSC B up) < N7* for N sufficiently
large, with  fixed as above. Then whenever By € A%; we have d([‘BNnaBﬁv) <2NF < N7z,

and |An(Bny) — An(BYy)| < 6, so that by Proposition 5.3.6 and by our definition of gg

sup I3 (B, 0) = I\ (Biy.0)| < gu(0)
BNE.A%(S

for N sufficiently large. In addition, by Proposition 5.3.1 we have
hm ‘J(ﬁ (By,0) J(ﬂ)(pSCBHuD,H,$)’:0.

The result follows. O

On the other hand, the result below shows that the restrictions we added to {X : [An(X) — x| <
d} to arrive at .A have probability negligibly close to 1 at the exponential scale. Notice that the

first point is exponential tightness. The proof will make up Section 5.5.
Proposition 5.3.9. Assume either the Gaussian Hypothesis or the SSGC' Hypothesis.

1. For every 6 > 0 we have

1
lim limsupﬁlogP?V(HXNH > M) = —oo.

M—=oo Noo

2. There exists v > 0 such that, for any 0 < kK < and any 0 >0

1 R _
lim N]OgPN(d(MXN;psc Bup) > N"") = —o0.

N—o0

Theorem 5.2.5 follows in the classical way from the exponential tightness above, the weak LDP
upper bound (Theorem 5.3.4), and the weak LDP lower bound (Theorem 5.3.5). We now prove

the latter two.
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5.3.5 The proof of the weak LDP upper bound

Lemma 5.3.10. Fiz y > r(psc B pup) and M > max(y,|1(psc B pp)|). Under the Gaussian Hy-

pothesis, choose any 0 = 0; or, under the SSGC Hypothesis, choose any 0 < 0 < 6’&8). Then

1
lim sup lim sup N logIP’?V(A%;) < —(IP(y) — 1P (y,0)).

6—0 N—oo

Proof. For any 6’ > 0, we have

1 19 (xy, 9/)]
Exy 13 (Xn,0)] 19Xy, 00

(8) '

Ex. [N (X 1

< XN[J(VB)( D) sup IV (X, 0) sup  ——— |
EXN [IN (XN, 9)] XEA?]K& XEA?I){E IN (X, (9/)

PR (A)5) = Exy [1XNEA§X[(SIJ(\?) (Xn,0)

Fix € > 0. By Corollary 5.3.8 and Lemmas 5.4.1 (applied to #', which is any nonnegative number,
hence the need for Lemma 5.4.1) and 5.4.2 (applied to 6, which is subcritical if necessary), if
M > y+ 6 (true for small enough § since M > y) and for N sufficiently large depending on 6, ¢,

and &, we thus have

1

o8 PR (AYS) < TP (y,0) — 1V (y,0') + 299 (8) + 299 (5) + €.
By taking N — oo, then ¢ | 0, then € | 0, we obtain

lim sup lim sup 1 logIP’?V(AéV[(;) < —(ID(y,0) — 1P (y,0))
510 Nooo IV ’

which gives us the result by optimizing over ¢’. O

Proof of Theorem 5.5.4. We first focus on the case when x < r(psc B up). For such an x, if § is
so small that z + J < r(psc B up) — 6, then whenever |Ay(Xy) — x| < 6, the empirical spectral

measure fiy, does not charge (r(psc B up) — 6, x(psc B up)). Hence d(fix,,psc B up) = f(0) for
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some positive function f. Thus for such ¢ and for N large enough we have
1 6 1 6 ~ —K
~1ou P (D (X) — 2] < ) < - log P (d(jixys pre B pip) > N7

which suffices in light of Proposition 5.3.9. Thus in the following it remains only to consider

T > 1r(psc B pp).
Fix >0, >0, x > r(psc B up), and a sufficiently large M. Then we have

PY (A € [z = 6,2 +0]) < PR(Ahs) + PY(d(iixy, pse B pp) > N7%) + PY (| X || > M).
An application of Proposition 5.3.9 gives us

1
lim sup N log P4 (\y € [z — 6,z + 6])

N—o00
. 1 0 ( AM \ 1 1 0
< max ( limsup — log Py (A} s ), limsup — log Py (|| X || > M) ).
N ’ N—o0 N

N—oo

By taking 6 | 0 and applying Lemma 5.3.10, we obtain

1
lim sup lim sup N log P (\y € [z — 6,z + 4))
640 N—o0

1
< max(—(l(ﬁ)(x) — IP)(z,0)), lim sup N log P (| X || > M))
N—o00

Finally we obtain the result by taking M — co and applying again Proposition 5.3.9. O

5.3.6 The proof of the weak LDP lower bound. The following lemma relies on results about

the rate function which will be established in Section 5.6.

Lemma 5.3.11. Under the Gaussian Hypothesis, choose any x > r(pscBup); or, under the SSGC

Hypothesis, choose any r(pse B pp) < x < x.. Then there exists 09(;’3) > 0 such that, for any M
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sufficiently large depending on x and any § > 0 sufficiently small depending on x, we have
1 RO
Jim - log P (A2) = o0.

If ¢ < x, then 9;(36) < Gﬁﬁ).

Proof. Fix > r(psc B up), and let 93(55) be such that

IO () = sup I'¥(x,0) = 1 (z,0(7)).
6>0

Proposition 5.6.1 below shows that this exists and is unique (except at = r(psc B up), where we
choose one of many possible 0;&’8 ) values by convention), and that O;E«ﬁ ) < 0&5 ) whenever z < z.. We

(B)
claim that in fact ]P’?\}” (AM) =1 — 0(1); to prove this, by Proposition 5.3.9 it suffices to show

1 (B)
limsupﬁlogﬂ”?\}” Av €[z —0,z+0]) <0

N—oo

for ¢ small enough. Since {Ay < r(psc Bup) — 1} C {d(fixy, psc B pp) > €} for some €, and since

the law of Ay is exponentially tight under P?{;, we need only show that for K large enough

' 1 o)
lim sup N loglPy (An € [r(pse Bup) — 1,2 — 0] U [z + 6, K]) <O0.
N—oo
(8)
But Theorem 5.3.4 shows a weak large deviation upper bound for IP’?\% with the rate function
J;EB) (y) = I®) (y) — IB)(y, 03(56)), which Proposition 5.6.1 below shows is nonnegative and vanishes

) (B)

uniquely at y = x. (This theorem applies, since 99(55 is less than ¢’ if necessary.) Since [r(ps. B

up) — 1,z — 0] U [z + 6, K| is a compact set that does not contain x, this suffices. O]

Proof of Theorem 5.3.5. If & < r(ps B pup), then I¥(z) = 400, and there is nothing to prove.

Thus we will assume in the following that z > r(psc B up).
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Whenever X € Aﬁ/ﬁ;, by Corollary 5.3.8 we have
TN (X,00) < 29,00 (8) + T (poe B, 6, )

for N sufficiently large. In addition, for every ¢ > 0, Lemma 5.3.11 tells us that for N sufficiently
(B)
large depending on e we have IP’JQ\”,“‘ (A%;) > e Ve,

We wish to use Proposition 5.3.3 to conclude that, for N sufficiently large depending on ¢ and

on 99(66 ), we also have

Ex [In (X, 00)] > N5+t b xun)-e)

Under the Gaussian Hypothesis, this is permissible for every z; under the SSGC Hypothesis, our
restriction < z, tells us by Lemma 5.3.11 that 9;5) < (9((;6), so that Proposition 5.3.3 indeed
applies.

Thus

) (8
Bty 5 B et IV (0, 67))

~Nsupy yu I (X0L7)
7 EXN [IJ(\fﬁ)(XNﬁeﬂ(ﬁﬂ))]

Exy I (Xn,00)]e

(B)y2 (B) (B8)

(8) (0] (8) ) _ey —Nsupy v Ty (X0:7)
2[@?\9/5 (Ai\{é)e]\[( B +JP) (up,0z " x(1p)) 8)6 Xe z,8

(8)42

0{P)y

—Ne N((=&

> e Ne V(75

B
+ Jua)(MD7(,<B>J(MD))_g)e—N(J(B)(pscaaup,eé ' )+29,5) (8)

x

—N(I(B)(:(:)+2a+2g 8)(9))
= e 6$ .

Thus, fixing some M sufficiently large, we obtain
1 1
liminf — log Py (|An(Xn) — 2| < 6) > liminf — log Py (AM) > — (19 (2) + 2¢ + 2g 5 (8))
N—oo N N—oo NN ’ 0z

and since this is true for every ¢ > 0 we can take the limit as 0 | 0 to conclude. O
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5.4 FREE ENERGY EXPANSION

In this section we prove Proposition 5.3.3, recalling that we state the results for 5 € {1,2} but give

proofs only for 5 = 1. (In particular, in the proofs we drop § from notations, writing In(-,-) for

I](\'?)(-, -) and so on.)

Proof under the Gaussian Hypothesis. For the remainder of this paper, we introduce the notation
Dy = diag(dy, ..., dy) = diag(d{"",...,d{").

For every unit vector e, we have

N
Ex, [eN0(eXne)] = HT (2VNbeic)) [H (VNOe3) Nedie?]
<] =1
i N (5.4.1)
= Hexp(2N026 )] [H ( N6?e} + NOd;e? )] o
Li<j =1

= eXp(Nl92> exp(N6(e, Dye)).
Integrating over S™V~!, we find
Exy[In(Xn,0)] = e In(Dy,0),

so Proposition 5.3.3 follows from Proposition 5.3.1. O

The proof under the SSGC Hypothesis is more involved and will take up the remainder of this

section. We separate the upper and lower bounds as follows.

Lemma 5.4.1. Under the SSGC Hypothesis, for any 0 > 0 and any N we have

02
Exy 1)) (Xn,0)] < V51 (D, 0).
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In particular, by Proposition 5.3.1, for any 6 > 0 we have

, 1 62
limsup  log Ex, [Iy” (X, 0)] < 5+, 0.5(up)).

N—oo

Lemma 5.4.2. Under the SSGC Hypothesis, for any 0 < 0 < 9&5) we have

2

.1 0
liminf - log Ex,, [1) (X, 0)] > 5+ . 0.x(up)).

The proof of the lower bound will use the following two technical results.

Lemma 5.4.3. Under the SSGC Hypothesis, for every § > 0 there exists €(0) > 0 such that, for
every N € N, every i,j € [1, N], and every t € R with |t| < €(0) if =1 (or every t € C with
t] <e(6) if B=2),

(1 +5ij)>_

T () > exp<<1 o

Lemma 5.4.4. For any 0 < 0 < 0, we have

N6{e,Dye)
Be,p [lem@vs c ]

1Y) (Dy, 0)

1
lim — 1 =0. 5.4.2
Ngnoo N 8 ( )
Proof of Lemma 5.4.1. This is the same as the proof under the Gaussian Hypothesis, except that
the second equality in (5.4.1) is replaced by an upper bound, due to the upper-bound assumption

(5.2.1) on Laplace transforms. O

Proof of Lemma 5.4.2. Fix § > 0, and let € = £(d) be as in Lemma 5.4.3, proved below. Whenever

the unit vector e is such that ||e]|oc < N~3/%, we have

max‘%/ﬁ@eiej‘ < g(9), max‘x/ﬁ&e? < e(0)

7’7‘7

for N > Ny(6). (The proof below will work with any exponent strictly between —1/2 and —1/4;

but since the exponent does not appear in the final result, we have chosen —3/8 for definiteness.)
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Thus the lower bound on the Laplace transform of Lemma 5.4.3 gives us, for such vectors e,

N
EXN[6N9<6’XN6>]: H N 2\/>(9616] [H \/>96 Nediezﬂ
_z<] " =1
- (1-5)2N62e2 al (1-8)NO2e+Nbd;e?
> |11« JLetmomerhe
[1<J =1

_ 6(175)N92€N9<6,DN6>'

Therefore

EXN [IN(XN, 9)] =E. [EXN [€N9<67XN6>H z Ee [1H6HOO<N—3/8EXN [IN(XNv 9)]}

S ((1-6)NE> e{ . N0<e,DNe>}
lle[lcc<N ™8
" {ln || 3€N9<67DN6>}
— (175)]\/'92 ellcc<N™ 8 In(D 0
e In(Dy.0) N(Dn,0).

Thus Lemma 5.4.4, which is proved below, and Proposition 5.3.1 give us
1
liminf — log Ex [IN(Xn,0)] = (1 — 6)0 + J(up, 0, r(up))
N—oco NN

for every § > 0. O

Proof of Lemma 5.4.3. Let u # &g be a centered measure on R, and write pu(f) for the integral of

a function f against u. Whenever z € R, we have e* > 1+ + % + %)’; thus

u(a?)  [tPu(z)
T
Now it is standard that the bound T},(t) < exp(* WG ( )) implies

ullz’) < 3(2u(2)*°L(3/2) < 8u(2?)*2.
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Then the result follows from the limit

£2 (22 81¢13 u(22)3/2
o 1og[1+ ua?) _ SiPua?) } 8 /()
1 T () B B
)

The speed of convergence in this limit can only depend on p through u(z?); thus in the result we

may choose £(d) uniformly in the distributions ,uZNJ O

Proof of Lemma 5./4.4. This builds on the proof of Lemma 14 in [101]. Notice that the upper bound
in Equation (5.4.2) is for free; we only need to show the lower bound.

It is well known that

(e1,... eN)i (91 gN>
lgll2""" " llgll2

where g = (g1,...,9n) is a standard Gaussian vector in RV, The idea is to work in this Gaussian
representation, relying on the fact that ||g|| will concentrate around v N.

Towards this end, we rewrite our desired inequality as

e g (V05 )

o)

Since standard Gaussian measure is isotropic, we may and will assume for the remainder of this

= 0.

1
lim inf — 1
Nae N 08

proof that the d;’s are ordered as di > --- > dy. Write v = vy for the unique solution in

(di — 5, +00) of the equation

11X 1
@NZ I
LVt og —di

(This exists and is unique because the left-hand side is a strictly decreasing positive function of
v € (dy — 55, +00), tending to infinity as v | dy — 2% and tending to zero as v — 0.)

Let us pause to collect some facts about v. If we write

dmax = dmax (NO) = Sup (max|d |)
N>=Ny
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for Ny large enough, then we have [118, Fact 2.4(3)] that v < di < dmax, and by definition
'U>d1_%>_dmax_%7so
1

< max anc 4
o] < dmax + 5 (5.4.3)

Furthermore, the proof of [101, Theorem 2] shows that, since < 0., there exists some small n > 0
such that

for all 4, 1+ 20v —26d; > . (5.4.4)

By the proof of [101, Lemma 14] (for the first inequality) and Equation (5.4.3) (for the second), for

every 0 < Kk < % and N large enough depending on x, we have

1

>
S, dig? '
£ |:6Xp (N9 Zf\il 91'2 Z

[T+ 200 — 20d;] e V00N 0l dma)

N | —
=

Il
,_.

(5.4.5)

=

[\/ 1+ 20v — 29d1} o~ NOV=N"""0(2dmax +55)

N | —
'EZ

Il
—_

)

2
For 0 < k < %, we introduce the event Ay (k) = {‘% - 1’ < N‘“}. Now the same arguments

from [101, Lemma 14], along with Equation (5.4.3), give

Z]'\il diQ‘Q
E |1 gl _y_ss €XDP | NOZF—5E
<y ( Y g2
N 2
=14dig;
> E 1AN(;§)1H9HOO<N—3/8 exp N&%
falta >i=19; (5.4.6)
5.4.6
N
_N1—k
> V0N o(dmax+|v|)El1AN(ﬂ)1lgglozoéN3/8 eXP(Ze(di—v)ggﬂ
=1

N

1— 1
> NOv—N'""0(2dmasx +35) H
i=1

1 91l _3 )
P A < N33,
1+29v—20dz} N( ¥R ol

where Py = P;\’,’DN Y is the probability measure on RV defined by

1 N 1 2
Py (dgr, ..., dgn) = V1 + 200 — 20d;e” 2(1+20v=20d0)g7 q .|
2V 27TN 121_[1{
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By Equations (5.4.5) and (5.4.6), we are done if we can show that

. 19l —-3/8
hmP”(AN/{, <N />:1.
W, PR AV, T

The proof of [101, Lemma 14] shows that, for our choice of v and since we have chosen 6 < 6.,

we have

Py (An(x)) = o(1),

so it remains only to bound

PX[(AN(K/) HgHOO > N—3/8> <

2
) 9i _
ol PN<AN(,{) I 3/4>

gl ~

3

M= 1=

@
Il
—_

<

N(’gi| > \/(N — Nl—n)N—3/4)

s

I
—

1
< P}G(!gil > 2N1/8)

)

for N large enough depending on k. But now we observe that
Gi =1+ 20v—20d;g;

are 1.i.d. standard normal variables under Py, so that by Equation (5.4.4) we have

N N

1 1
ZP;\)[OQZ“ > 2N1/8> = ZP}{,(Ig}I > SNYE/T 4200 20di)
i=1 i=1

< NP&(!@I > éﬁNl/S) < Nexp(—;’Nl/“)

which is o(1). This concludes the proof. O
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5.5 CONCENTRATION AND EXPONENTIAL TIGHTNESS FOR TILTED MEASURES

5.5.1 Proof overview. The proof of Proposition 5.3.9 is broken into the following three lemmata.
We emphasize that Lemma 5.5.3 is perhaps the main technical difficulty of the present paper, and
could be useful by itself. As throughout the paper, proofs are only written for 8 = 1 and thus we

drop (8 from all notations.

Lemma 5.5.1. If Proposition 5.5.9 holds for § = 0, then it holds for all 6 > 0. (For the second

point, the same v > 0 works for all > 0.)

Lemma 5.5.2. For any K > 2dyax ,

Py(An(Xn) > K) < 4exp(N(5 — 8\[§§))’

Pyv(M(Xn) < —K) < 4exp(N<5 = 8\K@>>

In particular, the first point of Proposition 5.5.9 is true for 8 = 0.

Lemma 5.5.3. Under Assumption 2, the second point of Proposition 5.53.9 is true for @ = 0: There

exists v > 0 such that, for any 0 < kK < 7,
. 1 A —K
J\}féo NlogIP’]\f(d(,uXN,psC Bup)> N"") = —occ.

Note that this result is the only place in the paper where we use Assumption 2.

5.5.2 Proof of Lemma 5.5.1.

Fix 6 > 0. Lemma 5.4.2 gives sharp lower bounds on

Exy[IN(XnN,0)]

for subcritical 8 values, but here we need a much weaker lower bound for all positive 8 values. To-
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wards this end, notice that whenever (1 is a centered measure on R, Jensen’s gives us inf;er 7),(t) > 1.

Thus for every unit vector e we have

]EX eN@(e,XN€>]

H Tﬂfvj (2v Nﬂeiej)
i<j
N 2
> H eN@dlel 2 e*N&dmax .
=1

wl

N
lH T~ (\/N@e?)e]\mdiel2
=l (5.5.1)

Now, whenever A = Ay is a Borel subset of the space of N x N real matrices, Equation (5.5.1)

and Cauchy-Schwarz give us, for N sufficiently large depending on 0,

Exy[1xyealn(XN,0)] _ noa
PO (A) = SN AN <e
VA = I (X, 0)

< 6N9dmax \/IPN(A)EXN76[62N9<67XN€>] = eNdeax \/PN(A)EXN [IN(XN, 29)]

max N9 7)(
> By e[LxyeaeN0eXne)]

Thus for any sequence { Ay} we have, from Lemma 5.4.1,

1 1 1 20> + J(up, 26
lim sup — log P4 (Axn) < 0dmax + = limsup — log Py (An) + (20)* + J(up, 7I'(MD)).
N—o00 N 2 Nooo N 2

This estimate gives us the following two points, from which we can verify the various claims of

Proposition 5.3.9 by taking various choices of {Ax} and {Apy n}.

~ If {An} is such that imy_,o0 + log Py (An) = —00, then for all § > 0 we have

1
lim sup N log P& (An) = —oc.

N—o0

— If {Apn} is such that limps—eo limsupy_ + log Pn(Aprn) = —oo, then for all § > 0 we
have

1
lim li —logP% (A = —o0.
pim_lim sup v log N(AmN) = —00

5.5.3 Proof of Lemma 5.5.2.
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For Lemma 5.5.2, notice that it suffices to bound Py (|| Xn|| > K). But

Pl RS PN(H 2> 5 )+ e (10wl > 5)

and the second term vanishes for K large enough, so we only need to control the first term. But
this was done in [99, Lemma 1.9]. The constants are slightly worse for the 8 = 2 estimate, and we

phrase Lemma 5.5.2 in terms of these worse constants.

5.5.4 Proof of Lemma 5.5.3.

Lemma 5.5.4. With C' and g as in Assumption 2, then for any n < 1 we have

8YCN~—%

Sup GpSCE/'LD (E + ZT’) - GP.SCEMD (E + ZT’)’ g 772

EcR

Proof. By recalling the definition of the Dudley distance and by calculating the L°° norm and

Lipschitz constants of the function y +— m, we find that

. . 2 .
’GPSCEEﬂDN (E + “7) - GPSCEE#D (E + “7)‘ < ?d(psc & KDy Psc B :UD)7

uniformly in £ € R.
Now we control d(psc B fipy, pse B p) in terms of d(fip,, pup). Write dy, for the Lévy distance

between probability measures
dr(p,v) =inf{e > 0: p(A) < v(A%) + ¢ for all Borel A}.

Then it is classical [71, Corollary 11.6.5, Theorem 11.3.3] that, whenever p and v are probability

measures on R,

1
§d(:u7 V) < dL(f%”) <2 d(/% V)'
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On the other hand, [48, Proposition 4.13] says that

dr(pse B fiDy s pse B p) < dr(pscs psc) + dr(fipy #p) = dr(fipy s 4D)-

Putting these together, we obtain

d(psc B up, psc B ﬂDN) < 2dL(psc B up, psc B ,aDN) < 2dL(,aDN>,UD) < 4\/ d(ﬂDN'),U'D)-

This finishes the proof by Assumption 2. O

Lemma 5.5.5. Fiz some A > 0 independent of N. If § > 0 is chosen sufficiently small, then
A . 50
| Bu[G (B 4+ iN70)] = Gy (B -+ iN )| dE = O(N2-min00.3)
—A

We first give an informal overview of the proof. We will compare Ex (G, (+)] and Gpempup ()
via three intermediate comparisons. First, we will import a local law to show that with high

probability and for appropriate z values,
1
GﬂXN (Z) ~ _N tr MMDE(Z)

where the matrix Mypr(2) = My MmpE(2) exactly solves a matrix equation called the Matrix Dyson

Equation (MDE). (The negatives appear since the convention in the local-law literature is to define

the Stieltjes transform of a measure as [ “Z(%Z) instead of our [ %. We have preferred to stick to

that convention when working in that vein, so that the reader can more easily cross-reference.) Then
we will show that a matrix Mwig(2) = Mn,wig(2) whose normalized trace is exactly —Gp @y,
approximately solves the MDE; standard arguments about the so-called stability of the MDE will

then show

1 1
_N tr MMDE(Z) ~ —N tr MWig<z) = GpscEEﬂDN (Z)
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Finally, we will use Lemma 5.5.4 to show

GPSCB}[LDN (Z) ~ GPSCEH,UD (Z)

Notice that all quantities here, except for G xy s re deterministic.

Proof of Lemma 5.5.5. Throughout, we write 2z = E + in. Later, we will decide how to choose
n=mn(N).

For a matrix M € CN*V we define its imaginary part as S(M) = 5[M — M*]. Whenever
S : CNXN 5 CN*N g a linear operator preserving the set {M : (M) > 0} that is self-adjoint
with respect to the inner product (R, T) = tr(R*T), it is known [106] that the following constrained

equation admits a unique solution:

1

0=Id+(z1d —Dn+S[M(2)]) M (z) subject to (M (z)) = 5

[M(z) — M*(2)] > 0. (5.5.2)

Furthermore, M (z) is a holomorphic matrix-valued function of z. In particular, we will be interested

in the unique solutions to this equation corresponding to two operators S:

1 1
Svpe|[M| = — tr(M)1d —i—NMT induces the solution Mypgr(z),

N
1
Swig[M] = N tr(M)1d induces the solution Mwig(2).
By rearranging (5.5.2) and taking the normalized trace, one sees that s(z) = —% tr Myyig(2) satisfies

the Pastur equation

which characterizes the Stieltjes transform of ps. B fip, ([131], see also [130, Section 2.2]). Hence

1
N tr MWig(Z) = GpscEEﬂDN(Z)-
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For any 6 > 0, write H = {z = E+in € C:n > 0} and define the complex domain
DY, ={z€H:|z| <N y>NI}

(The notation reminds us that points in this domain are relatively far from the real line;
typically in local laws the optimal scale is > %) Then [75, Theorem 2.1] tells us that there
is a universal constant ¢ > 0 such that, for any sufficiently small ¢ > 0, there exists C' = C(¢)

such that

€

1 : ce -
P(’GﬂxN (2) +  tr(Mupe(2))| < & in Dfar) >1-CN100,

Since =+ tr(Mupr(2)) is known by [5, Proposition 2.1] to be the Stieltjes transform of some

measure, we also have the trivial bounds

. 1 y
‘GﬂxN(E+“7)‘< and ‘Ntr(MMDE(E"_“?)) < -

I |

1
n
If n = N for some —ce < a < 0, then for N sufficiently large we have {E +in: |E| < A} C

.; thus whenever |E| < A and 7 is as above we have

Ne 2C
E N 2 100
XN N + 77 9

. 1 .
Gix, (E+1n) + ~ Mype(E + m)‘ <

so that
N

I

The following type of stability analysis is standard in the MDE literature; our exact line of

EXN[GﬂXN(E‘f‘“?)]+NU”MMDE<E+“7) dE <24 ——1—71\7 .

argument follows most closely that of [6]. By the definition of My, and since Snpgr[M] =
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Swig[M] + +MT, we have

M\?Vig(z)

N
———

=:E(z)

Myiy(2) = 21d =Dy + Supg[Mwig(2)] —

As the notation suggests, we will consider E(z) as an error term, so that Myyig(2) approxi-

mately solves Equation (5.5.2) with & = Supg. Indeed, from (4.1) in [5] we have, for every

z € H,
max{|| Moz (2) |, [|Mwig(2)[]} < 717 (5.5.3)
(Recall || - || is the operator norm induced by the standard Euclidean norm.) In particular,
we have
1E(2)] < J\}n (5.5.4)

Now manipulations of the MDE like those leading up to [6, (4.25)] yield the quadratic in-

equality

| Mwig(2) — MypE(2)||

< L7 O IMupE () | (HE )| Mwig (2) ]| + | Suelll| Mywig (2) = Mype(2)]),
where Z(z) : CN*N — CN*XN s the invertible operator
Z(2)[T) =T — Mype(2)Supe|[T)Mubpe(z)

and norms on operators from CV*¥ to itself are operator norms with respect to || - ||. Using

(5.5.3), (5.5.4), and the estimate ||Sypg|| < 2, this simplifies to

BEC]

| Mwig(2) — Mupg(2) || ;

(va72 + 2{| Mwig(2) — MMDE(Z)H2>- (5.5.5)

From [6, (3.23), (3.22), Convention 3.5] combined with (5.5.3), there exists a constant C' such
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that, for all z,

_ 1 ML (2)]1°
I =)l <c<1+n2+” M;g( )l ) (5.5.6)

We will use this in two regimes, depending on whether n > 1 or n < 1.

— Step 1 (n > 1): Taking norms on both sides of (5.5.2) and using (5.5.3), we obtain
1My (2)l| < [2] + dmax + 2.

Recall we are integrating over E in some [—A, A]; for such E, we have |z| < nv1 + A2,

so (using (5.5.6)) there exist constants C’, C” such that

M—l
sup Myl <, sup  ||L7H(2)|| < C”. (5.5.7)
|E|<Am>1 n |E|<Am>1

Now fix E € [~A, A] and consider the functions fy : (0,00) — R and g3 : [1,00) — R

given by
() = | Mwig(E +in) — Mype(E + i),
+ n 8(C")?
gN(n) = 40" (1 T4/l N774 :

For n > v/8C”, the bound (5.5.3) gives us

2 U]
- <307 < g ().

fn(n) <
But the quadratic inequality (5.5.5) with the estimate (5.5.7) inserted tells us that

fn(m) € 10,95 ()] Ulgn (), o).

Furthermore, since Mypr(2) and Myyig(2) are holomorphic functions of z, we have that
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fn(+) is continuous; and since gy () < gx(n) for all n > 1, we conclude fn(n) < gy (1)

for all n > 1.

Step 2 (1 < 1): Taking norms on both sides of (5.5.2) and using (5.5.3), we obtain
1 2
”MMDE(Z)H < |Z| + dmax + 5
Arguments like those above then give

|BEl<An<t

for some new constant C””, which we again insert back in the quadratic inequality (5.5.5).

This lets us bound fy(n) with respect to the new functions hi(n) : [N~/%0 1] — R

23 1\2
+ n 8(C")
hN(n) = 40" (1 +4/1—- N7748 ’

but at n = 1 and for N large enough we have (using 1 — /1 —z < x)

given by

20" 1

In(1) <gn(l) < - < W:hj(,(l).

Thus

uniformly over E € [—A, A]; hence

N 1 . » . s 4ACN/
./—A v E(MuDE(E +iN7%) — Mwig(E +iN™%) | dE < =55

for sufficiently small 6 > 0.
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— If n <1 then Lemma 5.5.4 gives us

A
[,
N—%

A
_ / A‘GPSCEMDN (B +in) = Gy (E + in)| dE < 16AVC -

1 . .
-¥ tr Mwig(E + 1) — G poemup (£ + m)‘ dE

Combining these estimates, we have the following result: If n = N~9 and § is sufficiently small,
then every assumption we made on 7 in the above bounds is satisfied and, for all sufficiently small

e >0,

A . ) N¢ 1 1 1
/_A‘EXN [GﬂxN (B +1in)] — Gpmpup (B + ’”7)‘ dE = O(N + nN100 + Np? + N520772>

—0 (N267min(0.99,%0)> .

This concludes the proof. O

Lemma 5.5.6. Write

FXN (LL’) = ﬂXN((*OQ l’]),

FPSCBHND (x) = (pSC Bﬂ ,U,D)((—OO, x])
Then there exists some v > 0 such that
SUp|Exy [Fxy (2)] = Fpuciup (2)] = O(NT).

Proof. To apply a standard method for bounding Kolmogorov-Smirnov distances, we must first

show

| By [Py (@) = P ()] da < . (553)

—0o0
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Since Ex, [Fx,| and F,_ m,, both take values in [0, 1], it suffices to find M > 0 such that

s B [y 0] = Fp ()] a2 < 0.

Furthermore, since ps. B up is compactly supported, we may take M so large that F,_ m,, ()

vanishes for x < —M and is identically one for x > M. Now,

N

Exy [Fxy ()] 1IEXN D 1y (xa)< ] ZIP’N (Xn) <) <Py (Xy) <z) (5.5.9)

so that, by Lemma 5.5.2,

-M -M .
/ Ex,[Fxy(z)]dr < / 1NCTER) dp = 32]\\[/5 exp [N (5 - Mﬂ

—00 —00

Similarly,

/00(1 —Ex, [Fx, (2)]) dz < 00
M

which finishes the proof of (5.5.8).
Thus we may import [19, Theorem 2.2], which says that, for any choice of n > 0 and B > 0, we

have

sup|Exy [Fxy (#)] = Fpeup (2)] <

1

- sup/ | Fpoctp (T + ) — Foempup (2)| dy
ly|<5n

F 5 B [Py (@] = Fp ()] da
|z|>B

10B
+ / IOB‘EXN [Gix (B + )] = Gopempp (B + in)’ dE] _

We will control the three terms on the right-hand side in order. In the course these estimates we

shall choose the parameters B and n = n(N).

— Since the compactly supported measure psc B pp has L> density [49, Corollary 5], F, mup
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is Lipschitz, so we can control the first term by

1
N @ Jlyl<5n

— Choose some B > max(|r(psc B 1p)|, |[1(psc B p)|); then arguments as above show that

2 o 644/2 B
n B [Fyo(2)] — Fy . (1) de < 2~ . 02V2 oo [N(5_)}
., |m|>B| X [Fxy (2)] = FpoBpp (7)] i o

Since we will ultimately choose 7 = N9 for some small § > 0, we can choose B so large that

this decays exponentially fast.

— If we choose 7 = N0 for § > 0 sufficiently small, then Lemma 5.5.5 tells us that

10B 6
/1OB‘EXN [GﬂXN (B + Z‘Nﬂ;)] — Gpomup (B + iNﬂ;)‘ dE = O(N%f?()).

We combine these to obtain
sup|Ex  [Fxy ()] — Fpomup ()] = O(Nrnax(ﬂs,za,%())).
x

O

Lemma 5.5.7. Under either the Gaussian Hypothesis or the SSGC' Hypothesis, there exist positive

constants C1 and Cy (depending on the constants in those hypotheses) such that
Py [d(fixy, Exylixy]) > N7V < CiNYexp(~CoNT/P).

Concentration results of this type are quite classical, using either the Herbst argument under the
log-Sobolev assumption, or results of Talagrand under the compact-support assumption. Indeed,
results of the former type are available “out of the box”; results of the latter type are available “off

the shelf” when Dy vanishes. But when Dy # 0, the barrier to using existing results is that, even
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if the entries of Wi are uniformly compactly supported, the diagonal entries of
VNXy =Wy + VNDy

are supported in boxes that, while of fixed size, may have centers tending to infinity. So we modify

the existing proofs for this situation.

Proof of Lemma 5.5.7. Suppose first that we satisfy the log-Sobolev option of the SSGC Hypoth-
esis, that is, that the laws of the entries of Wy satisfy a log-Sobolev inequality with a uniform
constant. Since Gaussian measure satisfies the log-Sobolev inequality, the same statement is true
under the Gaussian Hypothesis. Furthermore, one can see directly from the definition of the in-
equality that, if the law of the real random variable X satisfies the logarithmic Sobolev inequality
with constant ¢, then for any deterministic @ € R the law of X + « also satisfies the logarithmic
Sobolev inequality with constant c¢. Thus the laws of the entries of v/ N Xy satisfy a log-Sobolev
inequality with uniform constant. This uniformity allows us to import the result [103, Corollary

1.4b], which tells us that there exist positive constants C; and Cy such that, for any § > 0,
Pald(jix Ex lixa]) > 0] < <L (—Con?s?)
Nld(fxys Bxy lixy]) 2 0] < 375 exp(—Ca :

By choosing & = N6 this completes the proof under the Gaussian Hypothesis or under the
log-Sobolev option of the SSGC Hypothesis.
Next, we turn to the compact-support option of the SSGC Hypothesis, and start by importing

the following result.

Lemma 5.5.8. [103, Theorem 1.3a] Fiz some (a;;)ij<n C RN, and suppose that there erists a
compact set K C R such that the i, jth entry of VN Xy is supported on the compact set aj;j+K =
{ai; +k: ke K}. Write 61(N) = 8|K|\/n/N. Let K C R be compact, and define the class of test

functions

Fiipje = {f :supp(f) C K, [ flloo + [1f | 2ip < 1}
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Then, for any § > 4,/|K|61(N), we have

P( sup [ty (f(Xn)) — Eltry (f (Xn))]| 2 5)

T€Fup,c
2
32|K| N? 52
<= - — — (V)| |.
5 eXp( 16\K|2[16]IC] 01(N)

(This result was initially stated for centered entries, but by shifting the test function they use

to apply [143, Theorem 6.6] the proof goes through.) The authors of [103] then extend this result
to a supremum over all bounded Lipschitz functions, not just those that are compactly supported,
but in the case that E[X ] = 0. Their arguments require a bound on % tr(X%), which we replace
for our model with

1

Ntr(XZZV) < sup{\x!2 cx e K} + diqax +1,

which is true for N sufficiently large. Following their proofs but substituting this estimate, we

obtain the following result, which is analogous to [103, Corollary 1.4a:

Lemma 5.5.9. Under the assumptions and notation of Lemma 5.5.8, write S = sup{|z|* : z € K}

and M = \/8(S + d2,. +1). Then for any N sufficiently large and for any § > 0 satisfying the
implicit equation § > (128(M + v/§)81(N))*/>, we have

Pxy (d(/lXN7]EXN (ﬂXN)) > 5)
2
<128(M+\@exp( Al l o/ )—51(N)] )

§3/2 C16|K % | 128(M + V6

For N sufficiently large, § = N~1/6 satisfies the implicit equation given in the lemma, and it is

easy to show that
§5/2 NT/6

2
LQS(M +0) 51(N)] Z N2 (5120172

for N large enough, which gives the desired result in this case. O
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Proof of Lemma 5.5.3. By Lemma 5.5.7, if k < % we have

IP)N(d(/l)ﬁvvpsc & :U’D) > N_H)

N . N7F
)>NT*H + Py <d(/’LXN7EXN[IU’XN]) > >

d(]EXN [ﬂXN}»PscEEMD 2

C
< . 1/4 L2 1776 ‘
= ld(ExN[ﬂxN},pscaaquNT +C1N eXp<— 5 N

Now we wish to estimate d(Ex [fixy], pscEBpp), in order to show that the above indicator vanishes.
Towards this end, choose an arbitrary test function f with || f||zee + || fllLip < 1.

First we estimate the tails. For M large enough, Equation (5.5.9) gives us

’/OOM F(@)(Exy [fixy] — (psc B pp))(dz)

— ‘/Mf(IE)EXN[ﬂXN](dx) < llzExy [Fxy (—M)]

—00

< Exy [Fxy (=M)] < Py(Mi(Xn) < —M) < e
where the last inequality follows from Lemma 5.5.2. Similarly,
[ @) Exy ] - (e B rup)) (o) < 1~ Exy [Py (0] < .

Thus it remains to estimate ‘MM f(@)Exylixy] — (psc B MD))(dx)‘. We will do this by ap-

proximating f by a test function smooth enough to integrate by parts.
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More precisely, suppose first that f is C! and that |||z~ < 1. Then

M
|/M f(@)Exy[ixy] — (pse B pup))(de)

M
— | [ y f(@) d(Exy [Fxy (@)] = Fpumpup ()

< M fNlzee 4+ 1fllzee + 1 f o) I Exy [Fxx] = Fpeetup | oo

< (2M +2)|Exy [Fxy] = Fpeemup |l oo

Now suppose that f only satisfies || f|| o +| f||Lip < 1. Since [—M, M] is a compact set independent

of N, we may choose g € C' with 19"l oo (=, m7) < 1 and

1 = 9l o (=na.0m)) < (M + DIExy [Fxn] = Fpoerpp [l oo

Thus

M
' | @ = 9@ By [iey] = (pee B 1)) (da)| < 20F = glli-asany

< (2M +2)||Exy [Fxy] = Fpeemup || Lo
Combining these and and optimizing over f, we have
d(Exy [fixy)s pse Bup) < 2e7N + 4(M + 1)[|Exy [Fxy] = Fpeipp [ L= = O(N ),
where the last equality follows from Lemma 5.5.6. Thus if we choose 0 < k < v, we have

1 N —Kk = O
A(Bx  [fix  ],pscBrp)> 25
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for sufficiently large N; in particular this shows us that
C
Pr(d(fixy, pse Bup) > N7%) < O1NYV4 eXp<22N7/6)

from which point it is easy to conclude the proof. O

5.6 PROPERTIES OF THE RATE FUNCTION

The purpose of this section is to show that the supremum in the definition of

1P (z) = sup I¥(z, 0)
0>0

)

is achieved at a value 9,(56 , which is unique (except for © = r(psc B pp), where it is chosen by
convention) and which depends injectively on x. This implies that, in the large-deviation upper
bound established for tilted measures in Theorem 5.3.4, the rate function has a unique zero; this

property was crucial in the proof of Lemma 5.3.11 above. At the end of this section, we establish

goodness of 1% (.).

Proposition 5.6.1. For every x > r(psc B up) and for each f = 1,2, there exists a unique > 0,

which we will write 63(65), such that

1P (z) = sup I (z,0) = 19 (z,0(7)).

x
0>0

Furthermore, I®)(x) vanishes uniquely at x = r(ps. B up); and if we define by convention

B
9;5?,)75053“[,) = ngs{:Ba,UfD (r(pse B b))

;3,3)

then the map x — 0y on the domain {x > r(pscBup)} is injective. In particular, whenever x # y
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are at least r(psc B up), we have

ID(y) > 19 (y,60).

We also have

Te 2 r(psc B MD)

with equality if and only if G, (r(pp)) = Go.mup (t(pse B up)). In addition, the optimizer for x.
is in fact 0 as defined in (5.3.1):

9B — g(8) — gGuD(r(MD)) if Gup(r(pep)) < 400,

400 otherwise, by convention,
and if ¥ < x. then 95((;6) < Hg(ff). Finally,
72 — or(1)

Proof. For the duration of this proof, we introduce the notation

1D = psc B pp.

We now restrict ourselves to § = 1, dropping S from all notations, until the last section of the
proof when we show I = 27 It can be checked directly from the definition that that, for any

compactly supported measure v and any .# > r(v),

P R,(20) if0<20 <G, (A),

%J(V,H,%) =
M~ L 120> G, ().

Notice that this is a continuous function of f. Furthermore, it is known [102, Lemma 6.1] that

Guss (£ (1)) < min(Gyup (£(1D)). G (2(pc))) = min(Grup (x (1)) 1).
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Since G, is decreasing on (r(v),+00), there are three (or two) phases of 6 values:

0 if 0 < 20 < Gpse (2),

O I(z,0) = -
591 (@ 0) =gz —20— K,,(20) if Gpss(2) < 20 < Gy (x(1p)),

v—20—z(up) 20> Gpp(x(up)),

where the third case disappears if G, (r(up)) = 400 and the second case disappears if x = r(u35)
and G se(r(pf)) = Gup(r(up)). Notice that this is a continuous function of 6 > 0, and that, if

Gz () < 20 < Gpse(r(p5)), we can in fact write

0
%I(xﬁ) =z — K5(20).

In general we have

Gup (x(pp)) € (G5 (x(155)), +00].

For the purposes of our analysis, the endpoints of this interval are degenerate cases, and will be

handled separately at the end. For now, assume that

Gup(x(pp)) € (G (x(1p)), +00).

Then 0ylI(x,0) has three non-degenerate piecewise sections, and z. < oo, where we recall the
threshold
Gup(x(pp)) + (pp) if Gup(r(pp)) < oo,

Te =

400 otherwise.

In the course of the casework, we will show that z. > r(x$5) in this nondegenerate regime.

— Case 1 (z < z.): First we study 6 in (%GM%(x), $Gup(r(pp))) and write the function
Opl(x,0) as
0— fz(0) =2 —20 — K,,(20)
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defined on this interval. We have

4G}, (Ko (26))
(6., (K (26)))

BN T R e GO
8(/ (KMD(29)—t)2> </ (KMD<29)—t)3> <

since 20 < G, (r(up)), so that K, (20) > r(up) and f(KM“D(i% > 0 for i = 2,3. Thus
D

f2(0) =

fz is strictly concave.

Let us find out where it is maximized. Since

1
f(0) = Q(IW - 1);
R (20)-17

We can rearrange

r(p55) = Kpuss (G (r(135)))
= Ry, (Gugs (r(1D))) + Kup (G (x(1p)))

= Gss (x(135)) + Kpup (Gss (£ (135)))

to obtain

1 SC
(30mtrsn) =2| -1
(1) =Guse (x(135)) —1)?

But it is known that

/ pp(dt) _
(x(u5) = G (x () —t)*

Indeed, using the notation and results of [64, Proposition 2.1] (although the ideas date back

to [49]), the above statement is equivalent to the statement vy, (Fi ., (r(155))) = 0. But
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Fi ,, maps into {u +iv € CT : v > vy, (u)}, and here
Fupup (e(4D)) = £(1D) — Guss (x(45))

is real; furthermore vy ., (u) is a continuous function [49] of the real parameter u. These

conditions force vy, (F1 ., (r(p55))) = 0. But this means that
!/ ]' SC
723G e ) = 0.

Thus we have shown that f;(0) = 0gl(z, ) is a strictly concave function on the open interval
(%GusDc (), 3Gy, (x(pp)), taking a unique maximum value (which can be computed to be
x —r(p55)) at the point 6 = %G#sDc(r(MSDC)). Its value at the left endpoint of the interval is
0, and its value at the right endpoint of the interval is x — . < 0. In particular, since f, is
decreasing on (%Gusg (x(155)), 3Gpup (x(pp))), taking the value z — r(us5) on the left endpoint

and value x — z. on the right endpoint, we have z. > r(u35) as claimed.

Now if 6 > LG, (r(up)), then

Ogl(x,0) = —20 —r(up) < xc — Gup(r(up)) — r(pp) = 0.

There are two subcases here:

— Subcase a (z = r(u}5)): Here, fr(0) = Ogl(x,0) takes maximum value x — r(uj5) =0
on the interval
1 cery 1
(365 @), 3G (x(up)) ).

and is negative on the interval 3G, (r(up)), +00). Thus I vanishes at r(455).

— Subcase b (z > r(u55)): Here, the value of the function f, at § = %Gusg(r(ﬂ%)) is
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x —r(p35) > 0. Thus it vanishes at a unique point 6, in the interval

(G (x(5)),

; G (x40,

2

For such values of z, then, I(x,#) vanishes for 6 € [0, %Gusﬁ (x)]; strictly increases for
0 e (%Gusﬁa 0); and strictly decreases for 6 € (0, 400). In particular I(z) > 0 for such

x values.

— Case 2 (z > x.): Here we can explicitly write

0, — %(:c — r(up)). (5.6.1)

The function f, defined above is still strictly concave on its domain and still vanishes at the
left endpoint of this domain, but now its value at the right endpoint is nonnegative; thus
I(x,0) is strictly increasing for 6 € (%Gui% (), $Gup (x(1p))). A simple analysis of dpI(z,0)
for 0 > G, (r(up)) shows that 0, as defined above is, as claimed, the unique ¢ value that

maximizes I(z, ), and I(z) > 0.

In particular notice that

It remains only to show that =1 # 2o = 605, # 0,,. If v1 < 2. < xg, then 0,, and 0,, as
constructed above lie in disjoint intervals, so cannot be equal; and if x. < x1,x2 then we can see
0, # 05, from our explicit formula (5.6.1). Thus we only need consider z; < z2 < x.. If 1 =
r(ps), then 6, = %Gusg (r(p55)) < 04, by construction; thus we can assume r(uf5) < 1 < T2 < Ze.
But then 60,, and 6, are defined on the common interval (%Gusﬁ- (x(155)), 3Gup (x(up))) as the

unique points satisfying

20, + Kpup (204,) = 1 # 29 = 204, + K, (204,).
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Thus we must have 0, # 0,,.

Now we explain the necessary adjustments in the degenerate cases.

— Degenerate Case 1 (G, (r(up)) = Guss(r(1]))):

The proof of [102, Lemma 6.1] shows that w(r(u35)) > r(pp), where w is defined (see [64,

Proposition 2.1]) as w(z) = z — Gysc(2); hence

ze = r(pup) + Gup (r(pp)) = r(pup) + Guss(x (1))

= 2(j1p) + T () — w(x (1)) < T(1)

and all x are “at least critical.”

— Degenerate Subcase a (x = r(u55)): Then we only have

991 (r(p35), )
0 if 0< 20 < Gyp(r(up))

r(135) — 20 — x(up) if 20 > Gy (x(1ip))-
From the first line of this display and from the equality
Gup(x(up)) = Gz (x (D))

we have

0= R,U‘SDC (G,u% (I(MSB))) - G/JD (I(MD)) — Ry, (GMD (r(:uD»)

=r(4p) = Gup (x(pp)) — (D)

(5.6.2)

On the one hand, (5.6.2) tells us that

ze = r(pp)
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so that by convention

1

01 = 5 Guis (£05)) = 3G (1))

as claimed. On the other hand, if 26 > G, (r(up)) then (5.6.2) tells us that
Ol (x(135,0)) = (1p) — 20 —x(up) < T(4p) — Gup (x(kp)) — x(pp) = 0.

So Ol (r(p35)) < 0 for all # and I(r(p35)) = 0 as claimed.

— Degenerate Subcase b (z > r(u55)): Then f, as above is defined and strictly concave
on a nondegenerate interval; it vanishes at the left endpoint of this interval; it takes a
positive maximum (namely z — r(p55)) at the right endpoint of this interval. Thus the

analysis of Case 2 above holds to show that 6, is given by Equation (5.6.1).
The argument above for injectivity goes through, since Equation (5.6.1) works for all x values.

— Degenerate Case 2 (G, (r(up)) = +00): Here z. = +oo, and all « values are sub-
critical. The function f, from Case 1 is then defined and strictly concave on the interval
(%Gusg (x),4+00). It has a unique maximum at %Gusg(r(/fg)), where its value is positive; and
strict concavity tells us limg_,  f(6) = —oo; thus f, still has a unique zero on its domain,

which we still call 8,. The argument above for injectivity goes through.

Now we reintroduce § to all notations and show I @) =21, If z < T, then 99([;5 ) is defined

implicitly by
200) 1 i, (200)) = bject to 20 € (G <)), G
B e T 1735) B T = subject 1o B x € ( /lsﬁ(r(:u’D))? MD(r(:U’D)))‘

(We showed this for § = 1, and the extension to 5 = 2 is similar.) If x > z., then we have

2
B@éf” =z —1(pp)-
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Notice that 293(55 ) is independent of 5. But then the definition (5.2.2) gives us
B
T W, 0,, M) = 2T (v,0,,.4)

from which the claim follows. ]
Proposition 5.6.2. The function I1%)(-) is a good rate function.

Proof. First, for any compactly-supported measure y and any A > (), we have J¥) (1,0, \) = 0;
hence %) (z) is nonnegative.

For every fixed 0, dominated convergence tells us that J() (psc B up,0,x) is a continuous
function of > r(ps); hence I¥)(-) is lower semi-continuous at such x values. It is also lower
semi-continuous for = < r(ps B jp), where its value is infinite. Finally, since 1(%)(.) is nonnegative
and vanishes at r(psc B pp), it is also lower semi-continuous there.

Hence I () is a rate function. But since I(®(.) is the rate function for a weak LDP of an

exponentially tight family, it is classical (see, e.g., [69, Lemma 1.2.18]) that I%) is in fact good. [J
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Appendices

APPENDIX A: EXTENSIONS TO PRODUCTS OF DETERMINANTS

In this section, we are interested in expectations of products of determinants like

E[ﬁ | det(HM :
=1

where / is independent of N. In the landscape complexity program, these asymptotics help under-
stand the ¢th moment of the number of critical points of some high-dimensional random function.
Everything essentially is the same as in the case £ = 1, and we obtain leading-order determinant

asymptotics consistent with

E[H rdet<H§$>>\] ~ [T Elldet(H)]) (A1)
i=1 i=1

on exponential scale in N. This is true no matter the correlation structure between the H ](\?) ’s, which
is perhaps surprising at first glance. However, note that (A.1) should hold at “both ends of the

)

correlation spectrum,” so to speak: On the one hand, it holds with exact equality if the H](\; 's are
independent; on the other hand, if we believe in concentration then (A.1) is very plausible when
the H](\Z})’s are the same as each other.

However, (A.1) does require higher moment assumptions: for example, it holds when the H](\?

are Wigner matrices with 2¢ + ¢ moments, which is consistent with the case £ = 1. This is almost
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optimal, because if all the H](\?

’s are the same Wigner matrix, then the left-hand side of (A.1) is
infinite unless the entries have at least 2¢ moments; see the remark just before Corollary 2.1.3 and
the proof thereof in Section 2.3.3, which generalize to £ > 1.

These new moment assumptions are encapsulated in the following generalization of Assumption

(C) (notice that (Cf) with £ = 1 is the same as (C)).

(C*) In addition to the Wegner assumption (2.1.5), we require

N
o1 ¢
Jim - logE i:Hl(1+|AZ~\]1MZ_|>eNs) =0 (A.2)
for every € > 0 and
1
li ———log E[| det(Hy)|“"™)] < 0o for each i, A3
lzrvnj;loleogN ogE[| det(Hy)| ] < oo for each i (A.3)

for all sufficiently small § > 0.

Here is the analogue of Theorem 2.1.1.

Theorem A.1l. (Convexity-preserving functionals) Fix ¢ € N, and consider { collections
(X(i))f:1 each consisting of M arbitrary independent entries. The collections can have any corre-
lation structure with respect to each other. Consider matrices H](\?) = o0 (X(i)) that each satisfy

Assumptions (I), (M), (E), (C*), and (S) with reference measures ,u%). Then

, 1 - (i) ¢ (i) _
]\}gnoo (N logELzl_[l | det(H 5 )|] - ;/Rlogp\m]v (dX) | =0. (A.4)

Proof. We refer freely to objects from the proof of Theorem 2.1.1, adding a parenthetical index (7)

to indicate their corresponding matrix. For example,

) = {dxs(figm (x 0y oy iyt ,) S NTF
&) = {dis (g (x)): g (xy) S N7
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and so on. The main estimate in the upper bound is

l logE [H | det(H)|1 el ]

=1

< L ioE Sy N [ logl (Vi) (0 (V) ﬁ(ﬁ 1+p\ 1, ))]1 1 ]

< ylogEle o1 N>k ) Tl Tele
¢ ¢ N

<£(2€1(N)+t)+ZI/RlOgnK( d)\ +Z—logE ]1—[1(14-’)\ \]ll/\(i>|>K)e]

where we use Holder’s inequality in the last line. Using the assumption (A.2) and arguments as in

the one-determinant case, we use this to find

4 l
1 i
hmsup(logE[H ]det(HN )\]lg(z S(I)I]cl - E /log\)\\,ugv)(d)\)> <0
i=1

N—oo i=1

To conclude the upper bound, write €% = 5§§) N 552110. We expand

Z .
E [H | det(H\)| (L + ]1(5(i>)c)7]

i=1

as a sum over 2¢ terms, each of which has a product of ¢ determinants and a product of ¢ indicators.
We just studied the term with every indicator on €%, and now claim that any term with at least
one indicator on the complement of €% does not contribute. Indeed, suppose for concreteness that

the indicator 1 (£())e appears; then the term is bounded above by

4

E|T] I det(H{) 1 0
1=1

E .
< (H | det ()| 0+ e )P((5(1))C)1ié

=1

according to Holder’s. Using the new assumption (A.3), we proceed as in the proof of Lemma 2.2.4

to complete the proof of the upper bound.
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The lower bound is easier to generalize; by following the proof of Lemma 2.2.5, we find

¢
1 N [(log|A|=log, (A)i sy, < (s (dX -
NlOgE[He J (gl ~log, ()i )(x(@) )]l 0) ]1852)]1852110] > —e3(N)

: Egap
=1

with

2
‘C‘:VQ(N) = €<p2b log(l + eZNEn ) + ) - logP(ﬂ gg;)mgs;)agconcag( )>7

2uw?

which tends to zero since each of the events £ has probability tending to one. O

Here is the analogue of Theorem 2.1.2.

Theorem A.2. (Concentrated inputs) Fix ¢ € N, and suppose that each of the matrices
(4)

(H](é))le satisfies the assumptions of the one-determinant Theorem 2.1.2 with measures ji5f . Then

(A.4) holds.

Proof. For the upper bound, we mimic the proof of the one-determinant case, using Holder’s to

EN [log,(N)(i_ iy =El_5)])(dA)
Jos iy ) ]'/¢; we simply absorb this £ into the Lip-

obtain terms of the form E[e
schitz constant of log,. The lower bound is generalized as in the convexity-preserving-functional

case, Theorem A.1. O
We give two corollaries.

Corollary A.3. (Products of { Wigner matrices with 20 + ¢ moments) Fix some ¢ > 0,
and let (u ()) _1 be a collection of centered probability measures on R with 20 + ¢ finite moments
(4)

and unit variance. Let Wy’ be a real symmetric Wigner matriz corresponding to p . Then for

every collection (EM)_, we have

m — E O _ goy| —y ()
Jim - logE g\det(WN — EW)| —izl/RlogP\—E |pse(N) dX

Proof. We use Theorem A.1, verifying its assumptions as in the case of one Wigner matrix. We

need 2¢ + ¢ moments in the verification of (A.2) and (A.3) as follows: Dropping (---)® from the
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notation and arguing as in the one-point case, we find

N 14

N N
[Ja+ ij|11|Aj>eNE)€] <E [H (1 +10 Z\Bm)

j=1 j=1 k=1

E

i

where B is the matrix of tails, which has independent entries up to symmetry. When we expand
and factor the right-hand side, entries of B now appear with power at most 2¢ (instead of 2 before).

Similarly, to verify (A.3) we mimic the original notation and find

>, X
det(Wy + B)|0H9) < (N!)“M)T

and E[X£(1+6)] is finite because we have finite 2/(1 + 0) moments. O

Corollary A.4. (Products of { non-invariant Gaussian matrices) If (Hﬁ))le are Gaus-

sian matrices with a (co)variance profile satisfying the requirements of Corollary 2.1.8.B, or block-

diagonal Gaussian matrices satisfying the requirements of Corollary 2.1.9 — or a mizture of both —
(1)

and py are the corresponding MDE measures, then

: 1 ‘ (i) : (i)
]\;gllm<NlogELl—[l|det(HN )|] —;/Rlogumjv (A)dX | =0.

APPENDIX B: EDGE BEHAVIOR OF GENERAL FREE CONVOLUTIONS WITH SEMICIRCLE

Recall the notation of Section 3.5.2 for the free convolution of a measure up with the semi-circular

distribution of variance ¢, and for its left edge:

Mt = Psc,t tH KD,
by = 1(pe)

_ [ (dA)
mt(z)—/ﬂgﬁ.
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Recall also the notation p(+) for the density of p.

The following result might be of independent interest.

Proposition B.1. Any free convolution with semicircle decays at least as fast as a square root at
the extremal edges, in the following sense: For any compactly supported measure up and any t,

there exist c,e > 0 such that

pe(x) < o — by for x € [by, by + €].

On the one hand, square-root decay is of course achieved if up = dp (so that the free convolution
is semicircle). On the other hand, Lee and Schnelli have presented a family of examples where decay
at the edge is strictly faster than square root [114, Lemma 2.7]. Thus the power in this result cannot
be improved. We also mention works providing sufficient conditions on pup for a matching lower
bound, i.e., to ensure that extremal-edge decay is exactly square root, such as [21, Theorem 2.2]
(which actually considers free convolution between two Jacobi measures, not our special case when
one of them is semicircular).

This result also complements [49, Corollary 5] of Biane, which shows that decay near any edge
is at least as fast a cube root. As Biane shows, this is in fact the correct power at a cusp when
two connected components of the support merge. Thus the “extremal” restriction in our result is

necessary.

Proof. We adapt arguments of Biane [49] as follows. Biane considers the function v¢(u) : R — [0, 00)

1
< —
ve(u) = mf{ > 0: / (w—2) +v2\t}

and the open set Uy = {u € R : v;(u) > 0}, then defines a certain homeomorphism ; : R — R

defined by

(whose exact form is not important to us now) and proves that

(o)) = 2

it
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for all © € R.

On the one hand, by [49, Corollary 3], we have
Up = wt_l(ft) = Uy + tmy(£y).
This is at most 1(up) by (3.5.35), and in fact the inequality is strict since my(¢;) > 0:
ut < 1(pp). (B.1)

On the other hand, let = be such that p(x) > 0. Then x = 1)4(u) for some u € Uy, and adapting

the proofs of [49, Proposition 4, Lemma 5] we obtain

o < i) o4 ) L
S Top ity S 2+ 0w S 2% Tt

(B.2)

But the proof of [49, Lemma 5] shows that

T—u)

_ Jx o (d2)

= 2 1(up) — u.
Je Gy 0 ()

For u in some [ug, u; + €] (corresponding via ¢, to  in some [¢;, ¢, +£']), this lower bound is strictly

positive by (B.1). By (B.2), this suffices. O

APPENDIX C: COMPUTATIONAL DETAILS IN LARGE-DEVIATIONS EXAMPLES

We give the computational details for the example in Section 5.2.4. Using the equivalent [101,

Theorem 6] formula

JO (w0, 4) =0R, (;9) — g/log(l + EQRV (ZQ) - ;9y>y(dy),
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valid if 0 < %9 < Gy(A), and the constrained equation (5.2.6) implicitly defining o ), one can see

that

(6)y2
10w) = B2 1 2 rog (o= 200~y Jun(ay) - 5 [ 1080~ )0 Ba)(ay

(20) + L1 [(x S2) - ] 2 [oste  y)(pwe B up)(ay

(C.1)

for @ > (ps B up). We invert Ky, (4) = i (4) for y > x(a),

/ 29,2 2
= % to obtain G
choosing branches according to the requirement that G, ., (y) be decreasing on (r(pscBpp), 00);

if y > r(a), this yields

2 1
Gt () = 2|y = /=3 + 302 + ysin(§ - Zarctan(a(y) )

with d as in (5.2.9). In the limit y | r(a) we obtain

G et (t(a)) = c(a)

with ¢ as in (5.2.8). This gives us the bounds on the constrained problem (5.2.6); since K, (y) =

/ 24,2
%, this has the solution

gg(ﬂ) _2

50 1 —3 4 3a? + 2 sin(; arctan(d(m)))} .

if 2 > r(a). On the other hand, since ps. B pup decays at most like a cube root near its edges [49,

Corollary 5], we can differentiate under the integral sign to obtain

xT

[ 108z = ) (pre B 00} ) = [

G poempp (1) dt + / log(r(psc B ) — y)(psc B pp)(dy).
r(pscBup)
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We compute the second term on the right-hand side by setting 2 = r(psc B up) in (C.1), since then
I®)(z) = 0 and %03(56) = Gp..@up (r(psc B p)) = c(a); this yields

[ 1080 B 100) = ) e B 10) (dy) = 5 (c(a)* + Iogi((x(0) — c(a))? — a?)).

This gives the stated formula for 1% (z).
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