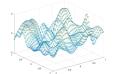
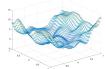
Landscape complexity of the elastic manifold

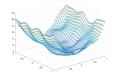
Benjamin McKenna

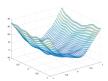
Harvard University based on joint work with Gérard Ben Arous and Paul Bourgade (both Courant, NYU)

Workshop on Spin Glasses, Les Diablerets September 28, 2022









What is this talk about?

• Landscape complexity: Let $f_N : \mathbb{R}^N \to \mathbb{R}$ be a sequence of smooth Gaussian random functions ("landscapes"), e.g. Hamiltonians or loss functions. Their (annealed) complexity is

$$\Sigma = \lim_{N \to \infty} \frac{1}{N} \log \mathbb{E}[\operatorname{Crt}(f_N)] := \lim_{N \to \infty} \frac{1}{N} \log \mathbb{E}[\#\{\operatorname{critical points of } f_N\}]$$

i.e.

$$\mathbb{E}[\mathsf{Crt}(f_N)] \approx e^{N\Sigma}$$
 for large N .

Also interested in Σ_{\min} counting just local minima.

- Today: Σ , Σ_{\min} for a special f_N called the "elastic manifold" (not diff. geo.), a classic model with two equivalent interpretations:
 - spin glasses interacting on a lattice mostly this one today
 - magnetic interfaces

Why?

$$\mathbb{E}[\operatorname{Crt}_{\min}(f_N)] \approx e^{N\Sigma_{\min}}$$

- Especially if $f_N = f_N$ (model parameters), and therefore $\Sigma_{\min} = \Sigma_{\min}$ (model parameters), good for distinguishing regions in parameter space (at least as a guess), such as
 - (physics, where f_N is a Hamiltonian)

glass phase
$$(\Sigma_{min} > 0)$$
 vs. non-glass phase $(\Sigma_{min} \le 0)$,

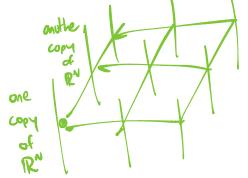
since loc. min. of Hamiltonian are metastable states, or

• (data science, where f_N is a loss function)

hard
$$(\Sigma_{min} > 0)$$
 vs. easy $(\Sigma_{min} \le 0)$ to optimize with (S)GD

since local minima can trap descent algorithms.

- ullet Fix once and for all a lattice ${\cal L}$, i.e., ${\cal L}=$
- Spin glasses (continuous, not Ising) are, e.g., random functions $f_{SG}^{(N)}: \mathbb{R}^N \to \mathbb{R}$, so for each lattice x attach $u(x) \in \mathbb{R}^N$,



- Fix once and for all a lattice \mathcal{L} , i.e., $\mathcal{L} = \mathbf{H}$
- Spin glasses (continuous, not Ising) are, e.g., random functions $f_{SG}^{(N)}: \mathbb{R}^N \to \mathbb{R}$, so for each lattice x attach $u(x) \in \mathbb{R}^N$, and consider

$$\mathcal{H}_{\mathsf{prelim}}[\vec{u}] := \sum_{x \in \mathcal{L}} f_{\mathsf{SG}}^{(N)}(u(x)).$$

Notice $\vec{u}: \mathcal{L} \to \mathbb{R}^N$, i.e., " $\vec{u} \in \mathbb{R}^{N|\mathcal{L}|}$," and $\mathcal{H}_{prelim}: \{\text{all } \vec{u}\text{'s}\} \to \mathbb{R}$, i.e., " $\mathcal{H}_{prelim}: \mathbb{R}^{N|\mathcal{L}|} \to \mathbb{R}$," hence in our framework.

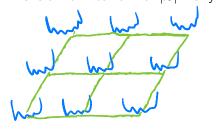
• This is a Hamiltonian for $|\mathcal{L}|$ many non-interacting spin glasses:

• Instead, add interactions as

$$\mathcal{H}_{N}[\vec{u}] := \sum_{x,y \in \mathcal{L}} t\Delta_{xy} \langle u(x), u(y) \rangle + \sum_{x \in \mathcal{L}} f_{\mathsf{SG}}^{(N)}(u(x))$$

where t > 0 is an interaction strength and $\Delta \ge 0$ is your favorite interactions matrix with entries Δ_{xv} .

• This is a Hamiltonian for $|\mathcal{L}|$ many interacting spin glasses:



$$\mathcal{H}_{N}[\vec{u}] = \sum_{x,y \in \mathcal{L}} t\Delta_{xy} \langle u(x), u(y) \rangle + \sum_{x \in \mathcal{L}} f_{SG}^{(N)}(u(x))$$

• The elastic manifold is a special case of this Hamiltonian, choosing Δ as the (periodic) lattice Laplacian and u u u u u u

$$f_{\mathsf{SG}}^{(N)}(u) = f_{\mathsf{soft}}^{(N)}(u) := \mu \cdot \frac{\|u\|^2}{2} + b \cdot \mathsf{noise}(u)$$

for "mass" $\mu>0$ and "disorder" b>0 ("noise" means your favorite "isotropic Gaussian" $\mathbb{R}^N\to\mathbb{R}$, normalized, i.i.d. for different lattice points)

- $f_{\text{soft}}^{(N)}$ is a classic analogue of spherical spin glasses $((u_i)_{i=1}^N$ are spins with "soft" quadratic constraint $||u||^2 = O_{\mathbb{P}}(1)$ instead of "hard" spherical $||u||^2 = 1$)
- Fyodorov '04: Complexity of $f_{\text{soft}}^{(N)}$ (special case of our model on a one-point lattice). Auffinger—Ben Arous—Černý '13: Complexity of spherical spin glasses (also one-point).

$$\mathcal{H}_{N}[\vec{u}] = \sum_{x,y \in \mathcal{L}} \mathbf{t} \Delta_{xy} \langle u(x), u(y) \rangle + \sum_{x \in \mathcal{L}} \mu \frac{\|u(x)\|^{2}}{2} + \mathbf{b} \cdot \mathsf{noise}(u(x))$$

- Hamiltonian has three competing terms:
 - t > 0 "elasticity" (to have low energy, wants to be flat)
 - $\mu > 0$ "mass" (wants to be close to zero)
 - b > 0 "disorder" (wants to be rugged)
- These same competing forces act on interfaces between plus and minus regions in a ferromagnet, so this is a classic model for magnetic interfaces.

 • Main question: Who wins, as seen in the critical points?
- - If b = 0, model is deterministic and quadratic, with only one critical point which is the global minimum $u \equiv 0$.
 - If t = 0, model has no interactions, and (via Fyodorov '04) lots of critical points for $\mu < \mu_c(b)$ but few for $\mu \ge \mu_c(b)$.

Elastic manifold: Main result

$$\mathcal{H}_{N}[\vec{u}] = \sum_{x,y \in \mathcal{L}} \textbf{t} \Delta_{xy} \left\langle u(x), u(y) \right\rangle + \sum_{x \in \mathcal{L}} \underline{\mu} \frac{\|u(x)\|^2}{2} + \underline{\textbf{b}} \cdot \mathsf{noise}(u(x))$$

Main theorem, informally (Ben Arous-Bourgade-M. '21)

(fixed lattice, $N \to \infty$, i.e. "Mézard-Parisi scaling") We split (t,μ,b) space into $\{\Sigma > \Sigma_{\min} > 0\}$ (explicit) vs $\{\Sigma = \Sigma_{\min} = 0\}$, the only possibilities, and recognize the μ -marginals of the boundary $0 < \mu_c(t,b) < \infty$ as the physically relevant "Larkin mass(es)."

- Confirms physics results of Fyodorov–Le Doussal '20.
- Proof relies on Kac-Rice formula, which is a standard way to reduce problems about $\mathbb{E}[\operatorname{Crt}]$ into problems about $\mathbb{E}[|\det(W_N)|]$ for W_N some real-symmetric random matrix related to the Hessian.
- We develop general techniques to answer the random matrix question, hence general techniques to study $\mathbb{E}[Crt]$: the elastic manifold today, but more in the papers, and meant to be broadly applicable.

Elastic manifold: Main result

$$\mathcal{H}_{N}[\vec{u}] = \sum_{x,y \in \mathcal{L}} \mathbf{t} \Delta_{xy} \left\langle u(x), u(y) \right\rangle + \sum_{x \in \mathcal{L}} \underline{\mu} \frac{\|u(x)\|^{2}}{2} + \underline{b} \cdot \mathsf{noise}(u(x))$$

Main theorem, informally (Ben Arous-Bourgade-M. '21)

We split (t,μ,b) space into $\{\Sigma > \Sigma_{\min} > 0\}$ vs $\{\Sigma = \Sigma_{\min} = 0\}$ (the only possibilities), and recognize the μ -marginals of the boundary $0 < \mu_c(t,b) < \infty$ as the physically relevant "Larkin mass(es)."

- For this problem, the Kac-Rice random matrix is (basically) W + Laplacian where W is a Gaussian random band matrix.
- "Larkin mass" comes from the theory of (de)pinning (a certain way magnetic interfaces respond to applied force): Larkin 1970 proposed some simplification of the Hamiltonian which is believed to be good exactly for μ such that $\Sigma=0$; Larkin's model has no local minima = metastable states ...