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Overview  Overview

What is this talk about?

o Landscape complexity: Let fy : RV — R be a sequence of smooth
Gaussian random functions (“landscapes”), e.g. Hamiltonians or loss
functions. Their (annealed) complexity is

1 1 o
Y = NlinoO N log E[Crt(fn)] := Nlinoo N log E[#{critical points of fy}]
i.e.
E[Crt(fy)] ~ eVE  for large N.

Also interested in > i, counting just local minima.

e Today: ¥, Xin for a special fy called the “elastic manifold” (not
diff. geo.), a classic model with two equivalent interpretations:

@ spin glasses interacting on a lattice
@ magnetic interfaces
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Overview  Overview

Why?

E[Crtmin(fy)] ~ e"=ri

@ Especially if fy = fy(model parameters), and therefore
Y min = Zmin(model parameters), good for distinguishing regions in
parameter space (at least as a guess), such as
@ (physics, where fy is a Hamiltonian)

glass phase (X, > 0) vs. non-glass phase (Xnin < 0),

since loc. min. of Hamiltonian are metastable states, or
@ (data science, where fy is a loss function)

hard (Xmin > 0) vs. easy (Xmin < 0) to optimize with (S)GD
since local minima can trap descent algorithms.
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Elastic manifold Motivation and definitions

Elastic manifold: Spin glasses on a lattice

@ Fix once and for all a lattice £, i.e., L =
@ Spin glasses (continuous, not Ising) are, e.g., random functions

fs(év) : RN — R, so for each lattice x attach\u(x) € RV,

e
cop
of
one
ey o
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Elastic manifold Motivation and definitions

Elastic manifold: Spin glasses on a lattice

e Fix once and for all a lattice £, i.e., L =
@ Spin glasses (continuous, not Ising) are, e.g., random functions

F(M . RN 5 R, so for each lattice x attach u( ) € RV, and consider

SG
prellm[lj] Z f(N)

xeL

Notice 7: £ — RV, ie., "o € RVEL" and Hpetim : {all 7's} — R,
i.e., “Hprelim : RNIEI 5 R,” hence in our framework.
e This is a Hamiltonian for |£| many non-interacting spin glasses:

\’W) \W) \,\,VJ = Spin jlass
\-I~) \ned ) - lothice thot
\,\,,,) \AM) \N\/I Joesnt matter
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Elastic manifold Motivation and definitions

Elastic manifold: Spin glasses on a lattice

@ Instead, add interactions as
N
Huli] = Dty (), u(y) + D g (v
x,yeL xEL

where t > 0 is an interaction strength and A > 0 is your favorite
interactions matrix with entries A,, .

@ Thisis a Hamiltonian for |£| many interacting spin glasses:

/"\ > Z = Spi jlass
\-l~) ol Aot

@Moﬂ’feﬂ
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Elastic manifold Motivation and definitions

Elastic manifold: Spin glasses on a lattice

v[d] = Z tAyy (u(x), Zf(N)

x,yeL xeL

@ The elastic manifold is a special case of this Hamiltonian, choosing A

as the (periodic) lattice Laplacian and
p\J b
?

e (u) = fig (u) = - 15

+ b - noise(u)

for "mass” p > 0 and “disorder” b > 0 (“noise” means your favorite

“isotropic Gaussian” R — R, normalized, i.i.d. for different lattice points)

(N) . . . . o
e f g is a classic analogue of spherical spin glasses ((u)", are spins with
“soft" quadratic constraint ||u|> = Op(1) instead of “hard” spherical ||u* = 1)

e Fyodorov '04: Complexity of f(oft) (special case of our model on a
one-point lattice). Auffinger—Ben Arous—Cerny '13: Complexity of

spherical spin glasses (also one-point).
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Elastic manifold Motivation and definitions

¢¢l)- +6 =
Elastic manifold: Spin glasses on a lattice (uh-\) +b- Mwe=

Haldl = 3 2 (w6 0+ 3 I - noise(ut)

x,yEL
@ Hamiltonian has three competing terms:

e t >0 “elasticity” (to have low energy, wants to be flat)

@ 1 >0 "mass’ (wants to be close to zero)

e b > 0 “disorder" (wants to be rugged)

@ These same competing forces act on interfaces between plus and
minus regions in a ferromagnet, so this is a classic model for magnetic
interfaces.

@ Main question: Who wins, as seen in the critical points?

o If b =0, model is deterministic and quadratic, with only one
critical point which is the global minimum u = 0.

e If t =0, model has no interactions, and (via Fyodorov '04) lots
of critical points for < pc(b) but few for p > pc(b).
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Elastic manifold Main result

Elastic manifold: Main result

Hn[i] Z tA,y (u(x), u(y)) + Z;LHU(X)HL F b - noise(u(x))

. 2
x,yeLl

Main theorem, informally (Ben Arous-Bourgade-M. '21)

(fixed lattice, N — oo, i.e. "Mézard-Parisi scaling”) We split (t, i, b)
space into {X > X,in > 0} (explicit) vs {X = Xnin = 0}, the only
possibilities, and recognize the pu-marginals of the boundary
0 < pc(t, b) < oo as the physically relevant “Larkin mass(es)

@ Confirms physics results of Fyodorov-Le Doussal '20.

@ Proof relies on Kac-Rice formula, which is a standard way to reduce
problems about E[Crt] into problems about E[|det(Wy)|] for Wy
some real-symmetric random matrix related to the Hessian.

@ We develop general techniques to answer the random matrix question,
hence general techniques to study E[Crt]: the elastic manifold today,
but more in the papers, and meant to be broadly applicable.
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Elastic manifold Main result

Elastic manifold: Main result

+b noise(u(x))

J]—ZtAM\u 3+Z}1

x,yeL

Main theorem, informally (Ben Arous-Bourgade-M. '21)

We split (¢, i, b) space into {¥ > Y nin > 0} vs {¥ = X in = 0} (the only
possibilities), and recognize the p-marginals of the boundary
0 < pc(t, b) < oo as the physically relevant “Larkin mass(es).”

@ For this problem, the Kac-Rice random matrix is (basically)
W + Laplacian where W is a Gaussian random band matrix.

e “Larkin mass” comes from the theory of (de)pinning (a certain way
magnetic interfaces respond to applied force): Larkin 1970 proposed
some simplification of the Hamiltonian which is believed to be good
exactly for p such that ¥ = 0; Larkin's model has no local minima =
metastable states ...
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