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Overview Overview

What is this talk about?

Landscape complexity: Let fN : RN
! R be a sequence of smooth

Gaussian random functions (“landscapes”), e.g. Hamiltonians or loss

functions. Their (annealed) complexity is

⌃ = lim
N!1

1

N
logE[Crt(fN)] := lim

N!1

1

N
logE[#{critical points of fN}]

i.e.

E[Crt(fN)] ⇡ eN⌃
for large N.

Also interested in ⌃min counting just local minima.

Today: ⌃, ⌃min for a special fN called the “elastic manifold” (not

di↵. geo.), a classic model with two equivalent interpretations:

spin glasses interacting on a lattice

magnetic interfaces
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Overview Overview

Why?

E[Crtmin(fN)] ⇡ eN⌃min

Especially if fN = fN(model parameters), and therefore

⌃min = ⌃min(model parameters), good for distinguishing regions in

parameter space (at least as a guess), such as

(physics, where fN is a Hamiltonian)

glass phase (⌃min > 0) vs. non-glass phase (⌃min  0),

since loc. min. of Hamiltonian are metastable states, or

(data science, where fN is a loss function)

hard (⌃min > 0) vs. easy (⌃min  0) to optimize with (S)GD

since local minima can trap descent algorithms.
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Elastic manifold Motivation and definitions

Elastic manifold: Spin glasses on a lattice

Fix once and for all a lattice L, i.e., L =

Spin glasses (continuous, not Ising) are, e.g., random functions

f (N)
SG : RN

! R, so for each lattice x attach u(x) 2 RN
,

and consider

Hprelim[~u] :=
X

x2L
f (N)
SG (u(x)).

Notice ~u : L ! RN
, i.e., “~u 2 RN|L|

,” and Hprelim : {all ~u’s} ! R,
i.e., “Hprelim : RN|L|

! R,” hence in our framework.

This is a Hamiltonian for |L| many non-interacting spin glasses:
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Elastic manifold Motivation and definitions

Elastic manifold: Spin glasses on a lattice

Instead, add interactions as

HN [~u] :=
X

x ,y2L
t�xy hu(x), u(y)i+

X

x2L
f (N)
SG (u(x))

where t > 0 is an interaction strength and � � 0 is your favorite

interactions matrix with entries �xy .

This is a Hamiltonian for |L| many interacting spin glasses:
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Elastic manifold Motivation and definitions

Elastic manifold: Spin glasses on a lattice

HN [~u] =
X

x,y2L

t�xy hu(x), u(y)i+
X

x2L

f (N)
SG (u(x))

The elastic manifold is a special case of this Hamiltonian, choosing �

as the (periodic) lattice Laplacian and

f (N)
SG (u) = f (N)

soft (u) := µ ·
kuk2

2
+ b · noise(u)

for “mass” µ > 0 and “disorder” b > 0 (“noise” means your favorite

“isotropic Gaussian” RN
! R, normalized, i.i.d. for di↵erent lattice points)

f (N)
soft is a classic analogue of spherical spin glasses ((ui )

N
i=1 are spins with

“soft” quadratic constraint kuk2 = OP(1) instead of “hard” spherical kuk2 = 1)

Fyodorov ’04: Complexity of f (N)
soft (special case of our model on a

one-point lattice). Au�nger–Ben Arous–Černý ’13: Complexity of

spherical spin glasses (also one-point).

Benjamin McKenna (Harvard) Landscape complexity of the elastic manifold September 28, 2022

a-U + b.nun = hw



Elastic manifold Motivation and definitions

Elastic manifold: Spin glasses on a lattice

HN [~u] =
X

x,y2L

t�xy hu(x), u(y)i+
X

x2L

µ
ku(x)k2

2
+ b · noise(u(x))

Hamiltonian has three competing terms:

t > 0 “elasticity” (to have low energy, wants to be flat)

µ > 0 “mass” (wants to be close to zero)

b > 0 “disorder” (wants to be rugged)

These same competing forces act on interfaces between plus and

minus regions in a ferromagnet, so this is a classic model for magnetic

interfaces.

Main question: Who wins, as seen in the critical points?

If b = 0, model is deterministic and quadratic, with only one

critical point which is the global minimum u ⌘ 0.

If t = 0, model has no interactions, and (via Fyodorov ’04) lots

of critical points for µ < µc(b) but few for µ � µc(b).
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Elastic manifold Main result

Elastic manifold: Main result

HN [~u] =
X

x,y2L

t�xy hu(x), u(y)i+
X

x2L

µ
ku(x)k2

2
+ b · noise(u(x))

Main theorem, informally (Ben Arous-Bourgade-M. ’21)

(fixed lattice, N ! 1, i.e. “Mézard-Parisi scaling”) We split (t, µ, b)
space into {⌃ > ⌃min > 0} (explicit) vs {⌃ = ⌃min = 0}, the only

possibilities, and recognize the µ-marginals of the boundary

0 < µc(t, b) < 1 as the physically relevant “Larkin mass(es).”

Confirms physics results of Fyodorov–Le Doussal ’20.

Proof relies on Kac-Rice formula, which is a standard way to reduce

problems about E[Crt] into problems about E[|det(WN)|] for WN

some real-symmetric random matrix related to the Hessian.

We develop general techniques to answer the random matrix question,

hence general techniques to study E[Crt]: the elastic manifold today,

but more in the papers, and meant to be broadly applicable.
Benjamin McKenna (Harvard) Landscape complexity of the elastic manifold September 28, 2022



Elastic manifold Main result

Elastic manifold: Main result

HN [~u] =
X

x,y2L

t�xy hu(x), u(y)i+
X

x2L

µ
ku(x)k2

2
+ b · noise(u(x))

Main theorem, informally (Ben Arous-Bourgade-M. ’21)

We split (t, µ, b) space into {⌃ > ⌃min > 0} vs {⌃ = ⌃min = 0} (the only

possibilities), and recognize the µ-marginals of the boundary

0 < µc(t, b) < 1 as the physically relevant “Larkin mass(es).”

For this problem, the Kac-Rice random matrix is (basically)

W + Laplacian where W is a Gaussian random band matrix.

“Larkin mass” comes from the theory of (de)pinning (a certain way

magnetic interfaces respond to applied force): Larkin 1970 proposed

some simplification of the Hamiltonian which is believed to be good

exactly for µ such that ⌃ = 0; Larkin’s model has no local minima =

metastable states ...
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