Extremal statistics for quadratic forms of GOE/GUE eigenectors or Xiv: 2208. 12206, with Laszlo E-ds (ISTA) benjaminmakenna, com/cornell Outline: (I) What Who cares

Heuristics (I) WHAT of Gaussian O-thogoral Ensemble Recall GOE is a random N×N real-symmetric matrix whose uppertringular etries are independent Gaussians. With (u;=u;) i=1 GOE eigenvectors, this talk is about large-N distributional limits of N Max (ui, An ui) deterministic real-symmetric N×N matrices i=1 Informal main theorem: Normalize ||ui||2=1, and let (y:=y:) in be independent standard Gaussian vectors (so llyill2 = N). If rank (AN) < N2-E for some \$>0, then not deep, just normalization

max N < ui, Anui) and max < yi, Anyi)

have the same N > 00 distributional limits.

Benefit: Reduces to Gaussian computations = classical extremal statistics, possible for any An. By making some

representative choices of AN, get

Corollary I (fixed rank): Fix k, fix a,, ak. Let a= max a;
m = # {i: ai=a}, and any An with Spec (An) = {a1, a2,, ax, 0,, 0}.
· Case 1: If at least one a; >0, then
N max (u; Anu;) - log N + (1-m/2) loglog N + Cm (a,, ax)
Gumbel in distribution (ie. P(UHS < x)) P(RHS < x) = e Vx)
La named distribution from extremal statistics
with $c_m(a_1,,a_K) = \log \left(\Gamma\left(\frac{m}{2}\right) \prod_{j=1}^{K} \left(1-\frac{a_j}{a_j}\right)$. • Case 2: If all ai's negative, then with $\delta_K = \frac{1}{2} \left(\kappa \frac{2}{\Gamma(K/2)}\right)^{2/K}$,
• Case 2: If all ais negative, then with $\delta k = \frac{1}{2} \left(\frac{2}{k P(k/2)} \right)^{1/k}$
$\frac{\chi_{k} N^{1+\frac{2}{k}}}{\left(\frac{1}{k} a_{j} \right)^{\frac{1}{k}}} \max_{i=1}^{N} \left(\chi_{i}, A_{N} \chi_{i}\right) \xrightarrow{N\to\infty} \frac{\chi}{2} - \text{Weibull} \text{in distribution}$ $\lim_{j=1}^{K} a_{j} \int_{\mathbb{R}^{N}} a_{j} ^{2} \int_{\mathbb{R}^{$
$ \left(\frac{1}{2} \right)^{\frac{1}{2}} \left($
Corollary 2 (diverging rank): Let An = diag (1,, 1,0,,0), rank (An)= N, 0 <a<\frac{1}{2}.< td=""></a<\frac{1}{2}.<>
The local of the l

Rmks: Results also for man Rui, And it, and it complex to minor case (GUE). Since GOE evecs are Hoar-distributed on the orthogonal group, result equivalent for thour columns, in particular for evecs of any invariant ensemble (density & e-Tr(V(X)) JX)

Rank-one GUE case: Lakshminarayan, Tomsovic, Bohigas,

and Majumdar 2008.

WHO	CARES?				
(i) Delocalization					
(2) Quartum (unique) ergodicity - Q(U)E					
Hea: This is a sort of distributional, extremal delocalization (QUE.					
RMK: If rank-one An = qqt, then < ui, Anui) = < ui, q).					
(1) Mean-field random-matrix evecs are flat (41; ≈ (5,, 5)).					
Can formalize in various senses, e.g. to any deterministic 11 q=q=11=1					
$ \langle u; q \rangle \lesssim \frac{N^2}{\sqrt{N}}$ with high probability, for each i, q (ST)					
or Strmage					
max Kn; q7 ≤ NE with high probability, for each q (SE)					
These are Size results, either Typical or Extremal.					
Complemented by Distributional results like					
"In <u;,q) asymptotically="" gaussian"<="" is="" td=""><td>(DT)</td></u;,q)>				(DT)	
i=1 M C/U; A1					
These are basically exercises for GOE, from special miracle (later),					
but universality (proving these for other RMs, like Wigner = real-					
symmetric with independent non-Gaussian entries) is very non-trivial. History					
	(ST)	(SE)	(DT)	(06)	
Universality	Knowles-Yin	Benigni-Lapatto	Baurgode-Yau	1	
for	113	Benigni-Lapatto '22	17	open!	
Wigner					

Open: For (11:) = evecs of a (even any!) non-Gaussian Wigner matrix, N max (n; q)2 - logN+ = loglogN + log ITT N-00 Gumbel in distribution. Even just for $q=e_1$, so $(n_1, q)^2 = u_1(1)^2$. Even subleading orders - state of the art is $\frac{N}{2}$ $\frac{N^{N}}{(2)}$ $\langle u_{i},q_{i}\rangle^{2} = O(\log N)$, Benigni-Lopatho 122. (2) Many disordered quantum systems have $i_{ij} \rightarrow \infty \ \langle \Psi_{ij} \ A \Psi_{j} \rangle = S_{ij} f(A)$ where · (4:) are eigenfunctions of some Hamiltonian · A is any deterministic operator (observable) in some good class · f is a model-dependent specific functional on this class either for most pairs i,j (QE) or stronger, for all pairs i,j (QUE). Examples: · Laplacian on some Riemannian manifolds

(influential QUE conjecture of Rudnick-Sarnak '94, open) · Regular graphs, both deterministic and random. · Random matrices (our setting) Sort of like higher-rank delocalization. Can also ask in senses (ST), (SE), (DT), (DE). History in random matrices: (ST): Bourgode-Yau 117 (SE): { Bourgade-Yau-Yin 120 Benigni 121 Cipolloni-Erdős-Schröder 122 universality (DT): { Benigni-Lopatto 122 Cipolloni-Erdős-Schröder 122 } Gaussian computation (DE): this talk Cuniversality open Charder than rank-one case?)

HEURISTICS (why y:? why rank restriction? why N1/2?)
Miracle: Got eigenvectors are exactly distributed as independent standard
Gaussian vectors after Gram-Schmidt.
Idea: Maybe Gram-Schmidt is basically just a rescaling here, since
@ high-dimensional Gaussian vectors are almost orthogonal
(b) norm of a Gaussian vector concentrates around IN.
Idea is correct for a few vectors jointly, but Gram-Schmidt error
(4) can add up after a lot of them. See works of Tiefeng Jiang
around 2005 on exactly how far this can be pushed for various
diservables/metrics.
Hace my cook restriction. Note some restriction on An is necessary:
If AN = Id, then max N(u; ANU;) = N is deterministic, but
max (y: Any;) fluctuates, so conclusion tails.
Important notation for rest of tak: Sizes: Yij~1

tant notation for rest ut TAK.

Wij~1

· K= KN = cank (AN).

- · Rototion-invariance \Rightarrow WLOG $A_N = diag(a_1,...,a_k,0,...,0)$. For simplicity here, set $a_i = 1$. • Let $Y \in \mathbb{R}^{N \times N}$ have IID standard Gaussian rows Y_i .
- · Let $\Gamma \in \mathbb{R}^{N \times N}$ have rows $Y_i = GS(y_i) \approx \frac{Y_i}{J_{N_i}}$
- ie. P is Hoar-orthogonal and (81, ..., 8N) = (u1, ..., un).
- · For Vij, Yil, first index is GS index (more important).

Index-swap miracle: (Rank-one for clarity) If
$$A_N = e_1e_1$$
,

 $M_N = e_1e_1$,

 $M_N = e_1e$

Proof sketch (why
$$N^{1/2}$$
?): Deterministically
$$\left| \max_{j=1}^{N} |A_j + B_j| - \max_{j=1}^{N} |A_j| \right| \leq \max_{j=1}^{N} |B_j|.$$

| PN - QN | = | MAX \(\times \) \(\times \

 $\leq \max_{j=1} \left| \sum_{i=1}^{K} (2y_{ij} (\sqrt{y_{ij}} - y_{ij}) + (\sqrt{y_{ij}} - y_{ij})^{2}) \right|$ Jiang 2005: Max Max | [N 8:j-4:j] & JK (probably tight up to log factors)

Better strategy: For second term, $K(J_N^E)^2$ already allows $K << N^{1/2}$ (nothing to cancel anyway). For first term, CLT instead of triangle inequality morally saves TR, so get size K. JR. JR, which also leads to K << N 1/2. Technical: Actually implement via high-moment expansion (~ \(\frac{1}{\xi}\) moments for K~N\(\frac{1}{\xi}-\xi\) The IN 8ij-4ij is annoying, since has projection of 4: onto 8j for j<i, which has norms in denominator. Carefully replace with projection of yi onto yi, which is bette for first high-moment expansion, with a second high-moment expansion. All this is graphically bookkept, like Feynman diagrams. Bulk of paper. (II) SUMMARY (1) Quadratic forms of GOE/GUE eigenvectors behave as if the eigenvectors were independent Gaussian vectors, under a rank restriction. 2) This allows for explicit computation and limit laws. (3) Like a distributional, extremal form of delocalization/QUE. (4) Proof: Gauss-Gram-Schmidt, index-swap miracle, graph: cally bookkept high-moment expansions. (5) Restriction rank (AN) < N'/2 is the limit for CLT techniques? 6 Open: Universality (even for rank-one, even for second order).

Here: max only adds log factors, so ignore it.

which tends to zero if K << N^{1/3}.

Naive strategy: Triangle inequality. Yij order-one, so get

IPN- QN ≤ K (2 JE + (JE)2) ~ KJE